Skip to main content

Computer Systems Engineering with a Year in Industry

Computer Systems Engineering with a Year in Industry

MEng
  • UCAS code HG29
  • Option 5 years full time
  • Year of entry 2021

The course

Computer systems engineering is a discipline that embodies the science and technology of design, construction, implementation, and maintenance of software and hardware components of modern computing systems, computer-controlled equipment, and networks of intelligent devices. It is solidly grounded in the theories and principles of computing, mathematics, science and engineering, and it applies these theories and principles to solve technical problems through the design of computing hardware, software, networks, and processes.

Creative technologies are at the core of the multimedia industries, but they are also changing the way we interact with computers and the real world. For work or entertainment, at home or in industrial environments, virtual/augmented reality is making its way into our everyday lives, requiring new tools (sensors, haptic devices) and approaches (artificial intelligence, storytelling).

This undergraduate degree will enable you to broaden your technological knowledge and understanding in Computer Sciences and Electronic Engineering and equip you with the practical skills that you will need to succeed in this fast moving and exciting area.

We offer a vibrant environment in which you can pursue your studies. You’ll study a combination of core courses in Computer Sciences and Electronic Engineering to introduce the theoretical knowledge and practical skills relevant to professional practice, with a range of specialist options from computer and network security systems, renewable energy systems, and smart transportation, to voice and music technologies, human factors and healthcare engineering.

The course will engage you imaginatively in the process of learning through creative hands-on group and individual project based activities, enabling you to develop your independent critical thinking and judgement. As well as the fundamentals of computer technologies and electrical/electronic engineering techniques, you’ll develop an appreciation of how electronics and computer systems engineering is the heart of many systems used on a daily basis, including mobile communications systems, computer system, transport systems, energy systems, software engineering, medical applications, domestic appliances, TV, radio, music studios and gaming devices.

  • A degree course structured to develop ingenuity, creativity, invention and product development skills
  • Enjoy varied, practical project-led learning.
  • Learn in a new building that is purpose-built to support electronic engineering processes.
  • Develop your interests through a number of optional modules in your final year.
  • Graduate with high employability prospects in a thriving industry.

Core Modules

Year 1
  • Working in groups, you will carry out a project using methods and techniques that parallel industrial practice. You will develop prototypes which solve one or more elements of a given issue. You will look at digital logic in the context of combinational and sequential logic with discrete logic gate circuits (AND, NOT, OR, NAND, XOR, XNOR) and consider how their responses can be modelled in practice using Boolean algebra, truth tables, De Morgan's theorem and Karnaugh maps. You will also become familiar with the professional team working attitudes and skills required to take projects from inception to the fabrication of a final product prototype.

  • In this module you will develop an understanding of programming in C++. You will learn how to use mathematical and computer-based models to solve electronic engineering problems and how to apply quantitative methods in C++. You will look at the concept of a computer program and compilation in the context of objective-orientated programming, and examine the digital representation of numbers, user interfacing, printing to screen, iterative and conditional statements, and error handling.

  • The aim of this module is to provide theoretical and practical knowledge of electronic components and their use in circuits. This module covers the electrical properties of both passive (including resistors, capacitors, inductors) and active electronic components (including diodes, photo diodes, LEDs, transistors, ICs, opto-isolators, opto-couplers) and how they are typically used in practical circuits during laboratory sessions. The design and analysis of analogue circuit behaviour is covered in the context of the use of phasors to represent voltage-current phase differences, transient and steady-state design and analysis of passive and active filters, time and frequency domain representations of the small signal responses of amplifier circuits.

  • The aim of this module is to provide an introduction theoretical and practical knowledge of communications engineering. In terms of indicative content, this module will include the description of a signal and its characterisation in the time and frequency domains, considerations, introduction to analogue and digital signals; linear time invariance, random variables, Gaussian random processes, probability, thermal noise; introduction to modulation techniques including RF modulation, spectral and power considerations, pre-emphasis and de-emphasis, baseband recovery, error detection and correction, PLLs, multiplexing; introduction to digital signal transmission including sampling theorem, a2d and d2a conversion and quantisation, numbers of bits, error bit probabilities, introduction to digital signal processing.

  • In this module you will develop an understanding of how to solve problems involving one variable (either real or complex) and differentiate and integrate simple functions. You will learn how to use vector algebra and geometry and how to use the common probability distributions.

  • In this module you will develop an understanding of how the internet works and its key protocols. You will look at the technologies used for web development, including scripting languages and their potential for adding dynamic content to web sites and applications. You will consider the role of web services and related technologies, and will examine the fundamental principles of network security.

  • In this module you will develop an understanding of how to solve problems involving more than one variable. You will learn how to use matrices and solves eigenvalue problems, and how to manipulate vector differential operators, including gradient, divergence and curl. You will also consider their physical significance and the theorems of Gauss and Stokes.

Year 2
  • In this module you will move from prototype design to product creation. Working in groups, you will take on a specific management function within the context of industrial practice. You will use the results of analysis and apply technology by implementing engineering processes to solve engineering problems. You will demonstrate the ability to use relevant materials, equipment, tools, processes or products and use creativity and innovation in a practical context to establish an innovative solution.

  • In this module you will develop an understanding of computer and network security. You will look at software vulnerabilities, hands-on hacking-oriented attacks, memory errors, and web and network security. You will learn how to identify such vulnerabilities and consider the countermeasures that can mitigate their exploitation. You will also examine malicious software (malware) as a typical consequence of a successful software exploitation.

  • In this module you will develop an understanding of how information security may be influenced by real-world design and implementation decisions. You will look at the different cryptographic algorithms, considering their use, advantages and disadvantages. You will use these cryptographic primitives to review and evaluate cryptographic protocols, and examine the rational decisions in the design of tokens and secure elements.

  • The aim of this module is to provide theoretical and practical knowledge of software engineering for electronics. This module introduces software engineering processes including the software lifecycle and the techniques used to produce and manage complex, fit-for-purpose, safe, large, cost-effective software systems in practice from both a technical and non-technical point of view. The concepts of software design, analysis and creation will be explored in the context of real-world examples and software architectures.

  • The aim in this module is to understand the mathematical interactions that the combination of various system types impose upon signals and their conveyance in communication applications, quantifying the interplay of deterministic cost factors such as bandwidth, energy, power and interference.

     

  • This module introduces the full and holistic life cycle analysis in relation to electronic products and components, their environmental impact and sustainability. You will develop an understanding of closed loop technology  renewable and sustainable technologies and challenges, motivators for sustainable engineering and the notion of ‘green engineering’. Ethical and social impact of engineering and technology will be covered together with real-world case studies.

  • In this module you will develop an understanding of the design of algorithms, with a focus on time and space complexity. You will examine basic algorithms, looking at the implementation and analysis of linear search, binary search, and basic sorting, including insertion sort, selection sort, merger sort, quick sort, and heap sort. You will consider alternative data structure representations, such as binary search trees, hash tables, and binary heaps, and will gain an insight into the basics of graph algorithms.

Year 3
  • In this module you will engage in theoretical and practical work on an agreed specific area relevant to electronic engineering. This will usually be a prototype that demonstrates the feasibility of a product or a fully functioning prototype depending on the nature of the topic itself. You will be allocated a supervisor and progress will be monitored against the specification in terms of implementation and testing as appropriate.

  • This course module will help you develop your knowledge and understanding of advanced digital systems design. You will learn the principles of designing digital logic circuits, hardware description languages and control unit design, acquire the skills to design controllers from written specifications, and evaluate and make decisions about specific digital system designs.

  • Computational Optimisation
Year 4
  • You will spend this year on a work placement. You will be supported by the Department of Electronic Engineering and the Royal Holloway Careers and Employability Service to find a suitable placement. This year forms an integral part of the degree programme and you will be asked to complete assessed work. The mark for this work will count towards your final degree classification.

Year 5
  • In this module you will work on a practical problem relevant to tomorrow's societal needs. Working in groups, you will classify the performance of systems and components through the use of analytical methods and practical modelling techniques in the context of your chosen project topic. The working practice of your group will be modelled on industrial practices in terms of planning, keeping proper records of meetings and the progress of work, and you will take on an individual role within the team that is vital to the professional and successful running of the project. You will compare and assess different design processes and methodologies and working successfully as a group member you will exercise initiative, leadership, time management and professional decision-making skills.

  • In this module you will you conduct a research project exploring a specific topic in electronic engineering. Topics may include smart cities, robots in industry, the aviation industry, the telecommunication industry, energy in developing nations, controlling complex systems, global communication systems, music technology, renewable energy generation, or cybersecurity protection of physical layers.

  • The module extends the knowledge acquired in digital systems with advanced topics in the emergent area of FPGA based system on chip design. The module will cover state-of-the-art features available in modern FPGAs exploring their fine-grained internal architecture and embedded macro blocks such as DSP slices, IPs and hardcore/softcore processors. A design language based on C/C++ will be presented as an alternative to traditional RTL design (VHDL). High level synthesis tools will be used to compute signal processing applications.

     

Optional Modules

There are a number of optional course modules available during your degree studies. The following is a selection of optional course modules that are likely to be available. Please note that although the College will keep changes to a minimum, new modules may be offered or existing modules may be withdrawn, for example, in response to a change in staff. Applicants will be informed if any significant changes need to be made.

Year 1
  • All modules are core
Year 2
  • All modules are core
Year 3
  • Advanced Algorithms
  • Intelligent Agents and Multi-agent Systems
  • Machine Learning
  • Cyber Security
  • In this module you will develop an understanding of the scientific principles underpinning practical signal processing. You will look at the mathematics behind signal processing and consider new and emerging technologies within the field. You carry out practical work in digital filter design involving the use of MATLAB.

  • In this module you will develop an understanding of a range of renewable energy generation concepts. You will look at technologies such as wind generators, solar generation, hydro and marine generation concepts, geothermal dynamics and biofuels. You will consider the different sources of primary energy as well as the energy conversion and electricity generation principals that are exploited. Using your engineering skills, you will build your own renewable micro-generators.

  • In this module you will develop an understanding of the human factors in healthcare engineering. You will look at critical safety issues in healthcare engineering and material compatibility in the context of implantable devices. You will consider the operation of systems such as eye trackers, hearing aids, cochlear implants, pacemakers, wearable health monitors and examine the role of assistive technologies, electronic enhancement for condition diagnosis, medical robots and drug delivery control.

  • Advanced Communications Systems
Year 5
  • Advanced Distributed Systems
  • Deep Learning
  • Intelligent Agents and Multi-agent Systems
  • Digital Forensics
  • This module provides theoretical and practical knowledge relating to pattern recognition. Topics will include Bayesian decision theory, Artificial Neural Networks and Support Vector Machines (amongst others). The nature of these algorithms will be studied along with engineering techniques for developing smart applications. Further, deep learning for engineering applications (eg. classification of electrocardiograms) will be studied and you will undertake a coursework to apply an appropriate machine learning methodology to solve a real-world pattern recognition problem.

  • Data Analysis
  • This module is an introduction to the design needs and software/hardware solutions to modern immersive capture, storage, mixing, rendering and presentation systems. Students will learn how VR/AR systems are constructed and the audio visual technology behind them.

  • This module will develop a deep understanding of the design needs and software/hardware solutions to modern immersive capture, storage, mixing, rendering and presentation systems. Students will learn how eXtended Reality (XR) systems are constructed and the audio visual technology behind them.

Teaching activities will include lectures, workshops and seminars and practical project work will be carried out in groups and individually in purpose-built thinking, prototyping and fabrication laboratories. In particular, the underlying principles of the course are the exploitation and development of creative skills in the context of proposing ingenious solutions to emerging problems prior to the prototype and product development stages.

Various assessment methods will be used including examinations for theoretical subjects, formal presentations, reports and practical demonstrations for project work with an additional viva voce examinations for final year individual projects. In addition, you will be involved in workshops and will produce various forms of creative work.

A Levels: ABB-BBB

Required subjects:

  • A-level in Mathematics
  • At least five GCSEs at grade A*-C or 9-4 including English and Mathematics.

Where an applicant is taking the EPQ alongside A - levels, the EPQ will be taken into consideration and result in lower A-level grades being required. Socio - economic factors which may have impacted an applicant's education will be taken into consideration and alternative offers may be made to these applicants.

English language requirements

All teaching at Royal Holloway is in English. You will therefore need to have good enough written and spoken English to cope with your studies right from the start.

The scores we require
  • IELTS: 6.5 overall. No subscore lower than 5.5.
  • Pearson Test of English: 61 overall. No subscore lower than 51.
  • Trinity College London Integrated Skills in English (ISE): ISE III.
  • Cambridge English: Advanced (CAE) grade C.

Country-specific requirements

For more information about country-specific entry requirements for your country please visit here.

Undergraduate Pathways

For international students who do not meet the direct entry requirements, the International Study Centre offers the following pathway programmes:

International Foundation Year - for progression to the first year of an undergraduate degree.

International Year One - for progression to the second year of an undergraduate degree. You can join the International Year One in January 2021 and progress to degree study in September 2021.

This degree will equip you with the technical knowledge, practical skills and confident verbal and written communication abilities, as well as transferable decision making skills in new, complex and unpredictable situations in industrial team working, with your experience gained working in an industrial environment. You will graduate with a skillset that will fully meet the demands required for employment in industry, including the development of new ideas, and experience in the application of creativity in solving computer systems engineering problems. You will acquire an awareness of environmental and social issues, investigating new materials and using them in ways that have a beneficial effect on humanity.

Home (UK) students tuition fee per year*: £9,250

EU and International students tuition fee per year**: £21,400****

Other essential costs***: To follow

How do I pay for it? Find out more about funding options, including loansscholarships and bursaries. UK students who have already taken out a tuition fee loan for undergraduate study should check their eligibility for additional funding directly with the relevant awards body.

*The tuition fee for UK undergraduates is controlled by Government regulations. For students starting a degree in the academic year 2020/21, the fee will be £9,250 for that year. The fee for UK undergraduates starting in 2021/22 has not yet been confirmed.

**The Government has confirmed that EU nationals starting a degree in 2020/21 will pay the same fee as UK students for the duration of their course. For EU nationals starting a degree in 2021/22, the UK Government has recently confirmed that you will not be eligible to pay the same fees as UK students, nor be eligible for funding from the Student Loans Company. This means you will be classified as an international student. At Royal Holloway, we wish to support those students affected by this change in status through this transition. For eligible EU students starting their course with us in September 2021, we will award an automatic fee reduction which brings your fee into line with the fee paid by UK students. This will apply for the duration of your course.

Fees for international students may increase year-on-year in line with the rate of inflation. The policy at Royal Holloway is that any increases in fees will not exceed 5% for continuing students. For further information see fees and funding and our terms and conditions. Fees shown above are for 2020/21 and are displayed for indicative purposes only.

***These estimated costs relate to studying this particular degree programme at Royal Holloway. Costs, such as accommodation, food, books and other learning materials and printing etc., have not been included.

**** This figure is inclusive of a £1200 fee reduction offered to students starting in 2021 for their first year of study. The fee for the second and third years will be £22,600.

Electronic Engineering Undergraduate Admissions

 

 

Admissions office: +44 (0)1784 414944

94% of students agreed the course is intellectually stimulating

Source: NSS, 2019

Explore Royal Holloway

Get help paying for your studies at Royal Holloway through a range of scholarships and bursaries.

There are lots of exciting ways to get involved at Royal Holloway. Discover new interests and enjoy existing ones

Heading to university is exciting. Finding the right place to live will get you off to a good start

Whether you need support with your health or practical advice on budgeting or finding part-time work, we can help

Discover more about our 21 departments and schools

Find out why Royal Holloway is in the top 25% of UK universities for research rated ‘world-leading’ or ‘internationally excellent’

They say the two most important days of your life are the day you were born, and the day you find out why

Discover world-class research at Royal Holloway

Discover more about who we are today, and our vision for the future

Royal Holloway began as two pioneering colleges for the education of women in the 19th century, and their spirit lives on today

We’ve played a role in thousands of careers, some of them particularly remarkable

Find about our decision-making processes and the people who lead and manage Royal Holloway today