Skip to main content

Geosciences & Sustainable Energy

Geosciences & Sustainable Energy

BSc
Apply now

Key information

Duration: 3 years full time

UCAS code: FH62

Institution code: R72

Campus: Egham

The course

Geosciences & Sustainable Energy (BSc)

BSc Geosciences and Sustainable Energy is a new degree designed to provide a clear and distinct pathway leading to a career in shaping society’s response to sustainable energy and the booming sustainable energy business. On this innovative new degree, you’ll gain the knowledge and skills needed to take an active part in the energy transition and the movement towards building a cleaner and more sustainable society.

  • BSc Geosciences & Sustainable Energy will give you a deep understanding of renewable energy sources like solar, wind, ocean energy, and the emerging technologies to harness the power of natural resources, as well as efficient resource management, and how to minimise waste and reduce pollution.  
  • You will be taught by academics with extensive industry experience allowing you to acquire highly employable practical skills and analytical abilities
  • You’ll study a hands-on degree with over 60 hours of fieldwork and over 60% of timetabled study time taken up by hands on practical classes
  • Study in a department consistently ranked among the top 10 in the country and home to an inspiring research culture that informs our teaching
Field trips

Fieldwork is the glue that brings together all aspects of the taught programme in Earth Sciences, as well as providing a chance for staff and students to get to know each other. The fieldwork programme is designed to provide progressive training over years 1 and 2 in preparation for fieldwork associated with year 3 dissertation projects, involving either geological mapping or environmental data collection.

The fieldwork programme includes year 1 trips to Devon, Pembrokeshire, Charnwood Forest, and Oxfordshire, year 2 trips to Scotland, Almeria, Southwest England, and for Independent Mapping, and year 3 has a trip to either Tenerife or Cyprus.

  • Develop an in-depth understanding of the complex issues around climate change and energy transition
  • Graduate with excellent employability prospects in the booming sustainable energy business sector
From time to time, we make changes to our courses to improve the student and learning experience, and this is particularly the case as we continue to respond to the Covid-19 pandemic. If we make a significant change to your chosen course, we’ll let you know as soon as we can.

Core Modules

Year 1
  • In this module you will develop an understanding of basic concepts in chemistry and physics and how to apply these to geological processes. You will look at atoms and atomic structure, the periodic table of elements, reactions, equations, geochemical analysis, the composition of the earth, interpretation of phase diagrams, solubility of minerals, weathering and the hydrological cycle. You will also consider Newton’s Laws, kinematics, circular motion, planetary orbits, gravity, magnetism, electricity, resistivity, stress, strain, seismicity, isostasy, radioactivity, and geochronology.

  • In this module you develop an understanding of the skills required to practice geology in the field, carrying out a series of activities in South Devon and Pembrokeshire. You will learn to describe and interpret the origin of sedimentary, igneous and metamorphic rocks and how to prepare a geological map and cross-section using standard symbols. You will examine stereographic projections, sedimentary logging, the construction of stratigraphic columns for the identification of rocks, and the analysis of structural features using stereonets.

  • Evolving Earth
  • Dynamic Planet
  • Human Interaction with the Earth
  • This module will describe the key principles of academic integrity, focusing on university assignments. Plagiarism, collusion and commissioning will be described as activities that undermine academic integrity, and the possible consequences of engaging in such activities will be described. Activities, with feedback, will provide you with opportunities to reflect and develop your understanding of academic integrity principles.

     

Year 2
  • Skills in GIS and Remote Sensing are most effectively acquired through practical work and the use of industry-standard commercial software packages. Practical work is entirely computer-based and involves learning techniques of handling, using and interrogating GIS data, through exercises and projects which have relevance to geology.

    The applications currently used are ArcGIS and ER Mapper.

  • In this module you will develop an understanding of the theory and practice of seismic, gravity, magnetic and resistivity surveying. You will consider the methods used to manipulate, analyse, and display geophysical data to solve geological exploration problems, and examine the strengths and weaknesses of the different data types.

  • In this module you will develop an understanding of how computation tools are used to read, create, analyse, and visualise digital earth science data. You will learn to use python, a popular scripting language, to read and manipulate data from digital files, and look at digital mapping techniques, using data to plot 2D and 3D maps. You will consider how to fit linear data and analyse the goodness of fit using statistical analysis tools, and examine how to produce simple models of geological processes using algebraic expression, such as generating models for seismic travel time curves, major element concentration during magma crystallization, sedimentary basin thickness, and other similar geological phenomena.

  • In this module you will develop an understanding of how to analyse geological structures in terms of the deformational mechanisms and tectonic stresses that have produced them. You will look at brittle failure in rocks, fracture types and propagation, and consider the relationship between principal stresses and geologic structures on small and regional scales. You will examine remotely sensed continental and marine data sets, and use imagery available in Google Earth for tectonic analysis.

  • Geothermal Energy
  • In this module you will develop advanced geological field skills. You will carry out a series of activities in an area of igneous and metamorphic rocks, and in an area of sedimentary rocks. You will learn to describe and interpret the origin of the rock types in the field and will prepare a geological map and cross-section using standard symbols. You will analyse structural features using stereonets, and infer the geological history of a region through the construction of scaled cross-sections through structurally complex terrains.

Year 3
  • Mineral Resources
  • Subsurface storage of CO2 and Energy
  • Independent Project

Optional Modules

There are a number of optional course modules available during your degree studies. The following is a selection of optional course modules that are likely to be available. Please note that although the College will keep changes to a minimum, new modules may be offered or existing modules may be withdrawn, for example, in response to a change in staff. Applicants will be informed if any significant changes need to be made.

Year 1
  • All modules are core
Year 2
  • In this module you will develop an understanding of the hazards associated with geological activity, their causes, and approaches to risk management. You will look at volcanoes, earthquakes, and radon, and the hazards associated with the exploitation of geological resources and associated anthropogenic activity, including asbestos, the mining industry, and contaminated land. You will examine a variety of geological and geochemical data, and learn to interpret and analyse these in order to make scientifically justified decisions as to the level of risk.

  • In this module you will develop an understanding of advanced chemical concepts relevant to the Earth Sciences. You will focus on isotope geochemistry and consider techniques that are directly applicable in most geological contexts. You will attend practical classes and conduct a small project involving the analysis and interpretation of a real geochemical dataset.

  • In this module you will develop an understanding of how to classify sedimentary basins according to their tectonic mode of formation. You will learn to explain and illustrate the basic processes of subsidence and uplift in basins formed by extension, and flexural loading of, the lithosphere. You will also consider how characteristic patterns of sedimentary facies and stratigraphic architecture relate to different basin types and the tectonic processes that formed them, examining the tectonosedimentary history of stratigraphic successions in outcrop and subsurface data.

  • In this module you will further develop your understanding of igneous and metamorphic geology. You will look at the characteristics and origins of alkaline igneous rocks, the nature and controls on metamorphic reactions, and the links between metamorphism and tectonic processes. You will consider hand specimen and thin section techniques for study of minerals and igneous and metamorphic rocks, and examine analytical approaches to the interpretation of metamorphic rocks, including the quantification of metamorphic rates and processes.

  • In this module you will develop an understanding of the key events in the history of life and their environmental impact using the fossil and sedimentary record. You will analyse fossil assemblages using stratigraphic principles such as absolute dating, lithostratigraphy, biostratigraphy and sequence stratigraphy. You will consider how to interpret sedimentary rocks, and examine the importance of fossil assemblages in the interpretation of events in earth history.

  • In this module you will develop an understanding of the geological evolution of the British Isles, interpreting regional geological history from geological maps. You will learn to describe rock specimens and examine how palaeoenvironments can be reconstructed using case studies. You will also consider the application of stratigraphic techniques and use evidence from several different fields of geology to evaluate competing hypotheses for geological evolution.

  • Practical Meteorology – An introduction
  • The aim of the module is to introduce you to the fundamental concepts of physical hydrogeology, particularly the flow and storage of water in geologic structures. The topics covered include the importance of groundwater in the hydrologic cycle, and fluxes of water between different reservoirs. The lectures will also cover the aquifer properties (permeability, transmissivity), Darcy’s law, groundwater flow equations and simple graphical and numerical ways to solve the groundwater flow equation, how to determine aquifer properties from pump tests, regional flow systems and basics of groundwater and surface water interaction.

  • The oceans form a critical component of the global climate system. They redistribute heat and nutrients around the world and in doing so exert a significant influence on the proliferation of different organisms, regional climatic zones, and the formation of mineral deposits on the seafloor. In this module you will learn about the physical and chemical constituents of the oceans. You will be introduced to the types of oceanographic measurements that can tell us how the modern oceans behave, and how this behaviour might be extended into predictions of future behaviour. You will also learn how to extract and process large oceanographic datasets using open-access oceanographic software.

Year 3
  • This course has two main aims:

    1) To introduce you to the evidence for and mechanisms of modern climate change – what climate change is, how the climate change is manifested, what physical mechanisms are driving it, and what its future status might be.

    2) Methods of research in multi-disciplinary topics, report writing, and communication of complex ideas for policy makers using Earth Science as a subject matter.

  • Hydrogeology
  • Planetary Geology and Geophysics
  • Volcanology
  • Advanced Techniques in Tectonic and Structural Interpretation
  • Marine Geology
  • Advanced Topics in Sedimentology
  • The Geology of Petroleum
  • Methods of Environmental Investigation
  • The Earth’s climate has changed across geological time, due to the interaction of a huge array of inter-related climate forcing agents. These changes have been reconstructed using many different lines of chemical, biological and physical proxy data, and mechanistically interrogated using computer simulations (Earth-System models). In this module, you will be taught about the key features of major climatic events in Earth’s history and should gain an appreciation of the typical rates and magnitudes of change that characterise these episodes. A key aim of the module is to demonstrate some of the techniques used for quantitative palaeoclimate reconstruction, and for you to learn the critical evaluation skills needed to interpret these datasets. These skills will be developed through class practical exercises and a summative task that requires the interpretation of a raw palaeoclimate dataset.

     

Teaching and learning is conducted primarily by means of practical classes. Lectures are used to introduce material and provide a context for private study, while tutorials supplement and reinforce knowledge and understanding. Field and laboratory project work carried out as individuals or in teams represent valuable opportunities for students to develop in-depth knowledge of specialist areas and help bring the syllabus to life.

Assessment is through a mix of coursework and end-of-year examination in varying proportions, depending on the chosen course units. Coursework can include literature research reports, fieldwork and laboratory exercises and reports, computer-based research projects, oral presentations and independent dissertations.

The first year is foundational, and marks do not count towards your final degree. The second and final-year marks do count, with the final year marks being more heavily weighted in order to reward progress and achievement. In the final year you will carry out an independent research project and write a research report with individual guidance from your tutor.

A Levels: BBB-BBC

Required subjects:

  • A-level in at least one science-based subject such as Mathematics, Physics, Geology, Chemistry, Geography or Biology.
  • At least five GCSEs at grade A*-C or 9-4 including English and Mathematics.

Where an applicant is taking the EPQ alongside A-levels, the EPQ will be taken into consideration and result in lower A-level grades being required. For students who are from backgrounds or personal circumstances that mean they are generally less likely to go to university, you may be eligible for an alternative lower offer. Follow the link to learn more about our contextual offers.

T-levels

We accept T-levels for admission to our undergraduate courses, with the following grades regarded as equivalent to our standard A-level requirements:

  • AAA* – Distinction (A* on the core and distinction in the occupational specialism)
  • AAA – Distinction
  • BBB – Merit
  • CCC – Pass (C or above on the core)
  • DDD – Pass (D or E on the core)

Where a course specifies subject-specific requirements at A-level, T-level applicants are likely to be asked to offer this A-level alongside their T-level studies.

English language requirements

All teaching at Royal Holloway is in English. You will therefore need to have good enough written and spoken English to cope with your studies right from the start.

The scores we require
  • IELTS: 6.5 overall. No subscore lower than 5.5.
  • Pearson Test of English: 61 overall. Writing 54. No subscore lower than 51.
  • Trinity College London Integrated Skills in English (ISE): ISE III.
  • Cambridge English: Advanced (CAE) grade C.

Country-specific requirements

For more information about country-specific entry requirements for your country please visit here.

Undergraduate preparation programme

For international students who do not meet the direct entry requirements, for this undergraduate degree, the Royal Holloway International Study Centre offers an International Foundation Year programme designed to develop your academic and English language skills.

Upon successful completion, you can progress to this degree at Royal Holloway, University of London.

BSc Geosciences & Sustainable Energy at Royal Holloway, University of London is a new degree course that is structured to prepare graduates for a wide range of geosciences careers, including energy-related jobs in government agencies, energy companies & consultancies, NGO’s, local government and the service industry. You will develop a broad skillset in renewable energy and resources exploration together with technical skills in the field of subsurface evaluation (geophysics, geology, sedimentology) and geospatial data analysis (GIS), attractive to employers in the energy sector, environmental organisations and many other fields. Graduates will also acquire a comprehensive understanding of the Geosciences and their importance for understanding current climate and environmental issues and their role in supporting the development of a sustainable society. Throughout your course you will benefit from our excellent ties with government agencies, international energy companies and local consultancies

Our students benefit from one-to-one advice from a Careers Consultant, and industry representatives regularly visit the Department to provide careers opportunities and advice.

Home (UK) students tuition fee per year*: £9,250

EU and international students tuition fee per year**: £24,000

Other essential costs***: There are no single associated costs greater than £50 per item on this course.

How do I pay for it? Find out more about funding options, including loansscholarships and bursaries. UK students who have already taken out a tuition fee loan for undergraduate study should check their eligibility for additional funding directly with the relevant awards body.

*The tuition fee for UK undergraduates is controlled by Government regulations. For students starting a degree in the academic year 2022/23, the fee is £9,250 for that year, and is provided here as a guide. The fee for UK undergraduates starting in 2023/24 has not yet been confirmed.

**The UK Government has confirmed that EU nationals are no longer eligible to pay the same fees as UK students, nor be eligible for funding from the Student Loans Company. This means you are classified as an international student. At Royal Holloway, we wish to support a transition for those students affected by this change in status. Please see the fees and funding page for more information.

Fees for international students may increase year-on-year in line with the rate of inflation. The policy at Royal Holloway is that any increases in fees will not exceed 5% for continuing students. For further information see fees and funding and our terms and conditions.

***These estimated costs relate to studying this particular degree at Royal Holloway during the 2021/22 academic year, and are included as a guide. Costs, such as accommodation, food, books and other learning materials and printing etc., have not been included.

95% overall student satisfaction

Source: NSS, 2020

9th in the UK for Earth Sciences

Source: Times Good University Guide 2020

93% of our Earth Sciences graduates are employed or in further study within 6 months of graduating

Source: DLHE, 2018

Explore Royal Holloway

Get help paying for your studies at Royal Holloway through a range of scholarships and bursaries.

There are lots of exciting ways to get involved at Royal Holloway. Discover new interests and enjoy existing ones

Heading to university is exciting. Finding the right place to live will get you off to a good start

Whether you need support with your health or practical advice on budgeting or finding part-time work, we can help

Discover more about our 21 departments and schools

Find out why Royal Holloway is in the top 25% of UK universities for research rated ‘world-leading’ or ‘internationally excellent’

Royal Holloway is a research intensive university and our academics collaborate across disciplines to achieve excellence.

Discover world-class research at Royal Holloway

Discover more about who we are today, and our vision for the future

Royal Holloway began as two pioneering colleges for the education of women in the 19th century, and their spirit lives on today

We’ve played a role in thousands of careers, some of them particularly remarkable

Find about our decision-making processes and the people who lead and manage Royal Holloway today