Skip to main content

Environmental Geoscience

Environmental Geoscience

MSci
  • UCAS code F631
  • Option 4 years full time
  • Year of entry 2021

The course

Population growth, global industrialisation and other related issues are putting our planet under unprecedented strain. As an Environmental Geoscientist you'll be in a position to apply both acute problem-solving skills and the profound understanding of humanity’s relationship with the planet required to help overcome some of our most significant threats.

This four-year course gives you a thorough understanding of environmental geoscience, and is an ideal preparation to progress into postgraduate study or a scientific or technical career.

The Department of Earth Sciences is consistently ranked among the country’s top 10 (The Complete University Guide and The Times Good University Guide 2018) and you'll work alongside our expert academics in a friendly, community-focussed department.

Participating in exciting fieldwork opportunities in the UK and overseas will develop your scientific understanding and hands-on experience of environmental, ecological and health issues. Choose from a range of optional modules in years two, three and four, tailoring your learning experience to fit your interests and career ambitions.

You’ll graduate with an integrated Masters (MSci) degree from one of the UK’s most highly-regarded departments, with the practical and research skills you need to pursue a rewarding career in your chosen field.

This course has been developed to lead students to posgraduate study and and is also recommended for those who wish to undertake a broader and deeper study of the subject. It will prepare you for careers in petroleum geology, environmental engineering, geographic analysis and other exciting sectors.

Our flexible degree programmes enable you to apply to take a Placement Year, which can be spent studying abroad, working or carrying out voluntary work. You can even do all three if you want to (minimum of three months each)! To recognise the importance of this additional skills development and university experience, your Placement Year will be formally recognised on your degree certificate and will contribute to your overall result. Please note conditions may apply if your degree already includes an integrated year out, please contact the Careers & Employability Service for more information. Find out more

  • Develop a deep understanding of humanity’s relationship with the planet.
  • Participate in exciting fieldwork opportunities.
  • Choose from a range of optional modules to tailor your learning to fit your interests.
  • Recommended for those who wish to undertake a broader and deeper study of the subject.
  • Prepares you for careers in environmental engineering, geographic analysis and other sectors.
  • Graduate with a degree accredited by the Geological Society.

Core Modules

Year 1
  • In this module you will develop an understanding of the evolution of major features of current and past tectonic activity of the Earth. You will look at the current understanding of the Earth’s interior, considering its importance for both the kinematic and tectonic evolution of the planet. You will also explore how plate boundaries have formed, the dynamic processes involved, the types of data used to investigate these regions both onshore and offshore, and the importance of these processes to society.

  • In this module you will develop an understanding of the surface processes and the mechanisms of weathering, transport and deposition. You will look at the classification of sediments and sedimentary rocks, and consider depositional facies analysis and interpretation of the paleoenvironment. You will also examine the use and interpretation of sedimentary logs, triangular diagrams, vector scales and granylometric data in analysing sedimentary rocks.

  • In this module you will develop an understanding of the fundamentals of environmental geology, including the connection between ecology and geology, the rates of geological processes, and the structure of the Earth. You will look at natural hazards such as earthquakes, volcanism, tsunamis, landslides and flooding. You will also consider the origin and usage of water and energy resources and examine the geological tools available to study climate change. You will learn how to manipulate algebraic equations and expressions, gaining familiarity with several types of charts, diagrams, and projections commonly used in geological sciences, such as log-log plots and stereonets.

  • In this module you will develop an understanding of crystallography, rock-forming minerals, their occurrence and textures in igneous and metamorphic rocks. You will look at igneous and metamorphic geology, volcanic and plutonic rocks, mineral identification, crystallisation, silicates, metamorphic rocks and textures. You will also examine the origin of chemical variation in volcanic rocks, metamorphic rocks and textures, and ore minerals.

  • In this module you will develop an understanding of basic concepts in chemistry and physics and how to apply these to geological processes. You will look at atoms and atomic structure, the periodic table of elements, reactions, equations, geochemical analysis, the composition of the earth, interpretation of phase diagrams, solubility of minerals, weathering and the hydrological cycle. You will also consider Newton’s Laws, kinematics, circular motion, planetary orbits, gravity, magnetism, electricity, resistivity, stress, strain, seismicity, isostasy, radioactivity, and geochronology.

  • In this module you will develop an understanding of the principles of structural geology and the interpretation of geological maps. You will look at large scale geological structures and learn how to recognise them on geological maps. You will consider how to interpret maps, recognise outcrop patterns, geological structures and geological relationships on maps, and how to draw cross sections. You will also examine smaller scale structures in hand specimen and outcrop, and analyse structural data in order to understand larger scale structural relationships.

  • In this module you will develop an understanding of palaeobiology and palaeoecology. You will look at the diagnostic characters of the major groups of fossils in the laboratory and field, and compare and contrast examples from the main categories of fossils, learning to differentiate between them. You will also examine the diversity of fossils and see how this can be applied in both stratigraphy and palaeoenvironmental analysis.

  • In this module you develop an understanding of the skills required to practice geology in the field, carrying out a series of activities in South Devon and Pembrokeshire. You will learn to describe and interpret the origin of sedimentary, igneous and metamorphic rocks and how to prepare a geological map and cross-section using standard symbols. You will examine stereographic projections, sedimentary logging, the construction of stratigraphic columns for the identification of rocks, and the analysis of structural features using sterenets.

Year 2
  • In this module you will develop an understanding of the key events in the history of life and their environmental impact using the fossil and sedimentary record. You will analyse fossil assemblages using stratigraphic principles such as absolute dating, lithostratigraphy, biostratigraphy and sequence stratigraphy. You will consider how to interpret sedimentary rocks, and examine the importance of fossil assemblages in the interpretation of events in earth history.

  • In this module you will develop an understanding of the geological evolution of the British Isles, interpreting regional geological history from geological maps. You will learn to describe rock specimens and examine how palaeoenvironments can be reconstructed using case studies. You will also consider the application of stratigraphic techniques and use evidence from several different fields of geology to evaluate competing hypotheses for geological evolution.

  • In this module you will develop an understanding of the hazards associated with geological activity, their causes, and approaches to risk management. You will look at volcanoes, earthquakes, and radon, and the hazards associated with the exploitation of geological resources and associated anthropogenic activity, including asbestos, the mining industry, and contaminated land. You will examine a variety of geological and geochemical data, and learn to interpret and analyse these in order to make scientifically justified decisions as to the level of risk.

  • In this module you will develop an understanding of advanced chemical concepts relevant to the Earth Sciences. You will focus on isotope geochemistry and consider techniques that are directly applicable in most geological contexts. You will attend practical classes and conduct a small project involving the analysis and interpretation of a real geochemical dataset.

  • Geological field skills for Environmental students
Year 3
  • GIS and Remote Sensing
  • Environmental Geology Independent Project
  • Methods of Environmental Investigation
  • The module aims to teach students advanced level key geological and transferable skills. Data Handling - a lecture and practical course on retrieval and handling of geological data which revises and extends numerical skills introduced in years 1 and 2. Presentation skills – presentation exercise to improve spoken, visual and other aspects of communication in geology. Advanced Field Skills - includes data collection, teamwork and site investigations.

     

  • A course including both advanced topics integrating knowledge across the Earth Sciences and also providing key geological and transferable skills for advanced-level students. Frontiers in Geology lectures - Philosophy of Geology, Physical Origins, the plate system and thermal controls. Biological controls. Environment. Integrated practicals - a range of diverse geological materials are analysed in a series of integrated map-linked practicals.

     

Year 4
  • Independent Environmental Geoscience Project
  • You will acquire practical experience, advanced knowledge and critical understanding of the role of aquatic chemistry, ecology, and hydrogeological processes in the diagnosis and management of surface- and ground-water. You will learn first-hand how water and wastewater are treated and how the quality of surface and groundwater is assessed in ecological and physio-chemical terms.

  • You will acquire practical experience, advanced knowledge and a critical understanding of the dispersion and conversion of gaseous and particulate air pollutants derived from man-made and natural sources, their impacts on health, climate and the environment, and global air quality monitoring methods and management issues.

  • You will acquire practical experience, advanced scientific and technical knowledge, and a critical understanding of quality assured sampling strategies, sample preparation procedures and analytical systems for environmental inorganic pollutants. The focus will be on quantitative measurements of heavy metals and radionuclides with natural and man-made sources in different environmental media.

Optional Modules

There are a number of optional course modules available during your degree studies. The following is a selection of optional course modules that are likely to be available. Please note that although the College will keep changes to a minimum, new modules may be offered or existing modules may be withdrawn, for example, in response to a change in staff. Applicants will be informed if any significant changes need to be made.

Year 1
  • All modules are core
Year 2
  • In this module you will develop an understanding of how to classify sedimentary basins according to their tectonic mode of formation. You will learn to explain and illustrate the basic processes of subsidence and uplift in basins formed by extension, and flexural loading of, the lithosphere. You will also consider how characteristic patterns of sedimentary facies and stratigraphic architecture relate to different basin types and the tectonic processes that formed them, examining the tectonosedimentary history of stratigraphic successions in outcrop and subsurface data.

  • In this module you will further develop your understanding of igneous and metamorphic geology. You will look at the characteristics and origins of alkaline igneous rocks, the nature and controls on metamorphic reactions, and the links between metamorphism and tectonic processes. You will consider hand specimen and thin section techniques for study of minerals and igneous and metamorphic rocks, and examine analytical approaches to the interpretation of metamorphic rocks, including the quantification of metamorphic rates and processes.

  • In this module you will develop an understanding of the theory and practice of seismic, gravity, magnetic and resistivity surveying. You will consider the methods used to manipulate, analyse, and display geophysical data to solve geological exploration problems, and examine the strengths and weaknesses of the different data types.

  • In this module you will develop an understanding of how computation tools are used to read, create, analyse, and visualise digital earth science data. You will learn to use python, a popular scripting language, to read and manipulate data from digital files, and look at digital mapping techniques, using data to plot 2D and 3D maps. You will consider how to fit linear data and analyse the goodness of fit using statistical analysis tools, and examine how to produce simple models of geological processes using algebraic expression, such as generating models for seismic travel time curves, major element concentration during magma crystallization, sedimentary basin thickness, and other similar geological phenomena.

  • In this module you will develop an understanding of how to analyse geological structures in terms of the deformational mechanisms and tectonic stresses that have produced them. You will look at brittle failure in rocks, fracture types and propagation, and consider the relationship between principal stresses and geologic structures on small and regional scales. You will examine remotely sensed continental and marine data sets, and use imagery available in Google Earth for tectonic analysis.

Year 3
  • Extended Essay (Dissertation)
  • Advanced Topics in Sedimentology
  • Aqueous Geology
  • Volcanology
  • Modern Climate Change
  • Mineral Resources
Year 4
  • You will acquire practical experience, advanced knowledge and critical understanding of the role of aquatic chemistry, ecology, and hydrogeological processes in the diagnosis and management of surface- and ground-water. You will learn first-hand how water and wastewater are treated and how the quality of surface and groundwater is assessed in ecological and physio-chemical terms.

  • You will acquire practical experience, advanced knowledge and a critical understanding of the dispersion and conversion of gaseous and particulate air pollutants derived from man-made and natural sources, their impacts on health, climate and the environment, and global air quality monitoring methods and management issues.

  • You will acquire practical experience, advanced scientific and technical knowledge, and a critical understanding of quality assured sampling strategies, sample preparation procedures and analytical systems for environmental inorganic pollutants. The focus will be on quantitative measurements of heavy metals and radionuclides with natural and man-made sources in different environmental media.

The course has a modular structure, with students taking sixteen course units at the rate of four per year. Some course units are compulsory while others are elective, thereby providing flexibility and choice. Assessment is by a mixture of coursework and end-of-year examination in varying proportions, depending on the course units you choose to take.

The first year is foundational and marks do not count towards your final degree, whereas the second year, year abroad and final year marks do count – with more importance being given to the final year marks in order to reward progress and achievement.

A Levels: ABB-BBB

Required subjects:

  • A-level in at least one science-based subject such as Mathematics, Physics, Geology, Chemistry, Geography or Biology.
  • At least five GCSEs at grade A*-C or 9-4 including English and Mathematics.

Where an applicant is taking the EPQ alongside A-levels, the EPQ will be taken into consideration and result in lower A-level grades being required. For students who are from backgrounds or personal circumstances that mean they are generally less likely to go to university you may be eligible for an alternative lower offer. Follow the link to learn more about our contextual offers.

English language requirements

All teaching at Royal Holloway is in English. You will therefore need to have good enough written and spoken English to cope with your studies right from the start.

The scores we require
  • IELTS: 6.5 overall. No subscore lower than 5.5.
  • Pearson Test of English: 61 overall. Writing 54. No subscore lower than 51.
  • Trinity College London Integrated Skills in English (ISE): ISE III.
  • Cambridge English: Advanced (CAE) grade C.

Country-specific requirements

For more information about country-specific entry requirements for your country please visit here.

Undergraduate Pathways

For international students who do not meet the direct entry requirements, the International Study Centre offers the following pathway programmes:

International Foundation Year - for progression to the first year of an undergraduate degree.

International Year One - for progression to the second year of an undergraduate degree. You can join the International Year One in January 2021 and progress to degree study in September 2021.

Environmental Geoscience (MSci) at Royal Holloway, University of London is geared towards leading students to further postgraduate study and to scientific or technical careers in the Earth Sciences. You’ll graduate with a Masters degree, as well as a practical skillset that will prove attractive to employers in a variety of sectors. The Department retains excellent industry connections, with representatives regularly visiting the campus to provide careers opportunities for current students.

Our alumni have gone on to achieve rewarding careers in Earth Sciences and other related disciplines.

Home (UK) students tuition fee per year*: £9,250

EU and International students tuition fee per year**: £22,600

Other essential costs***: £100 for a set of essential field work equipment, for example a hard hat, compass. £150 per year contribution towards field trip costs.

How do I pay for it? Find out more about funding options, including loansscholarships and bursaries. UK students who have already taken out a tuition fee loan for undergraduate study should check their eligibility for additional funding directly with the relevant awards body.

*The tuition fee for UK undergraduates is controlled by Government regulations. For students starting a degree in the academic year 2020/21, the fee will be £9,250 for that year. The fee for UK undergraduates starting in 2021/22 has not yet been confirmed.

**The Government has confirmed that EU nationals starting a degree in 2020/21 will pay the same fee as UK students for the duration of their course. For EU nationals starting a degree in 2021/22, the UK Government has recently confirmed that you will not be eligible to pay the same fees as UK students, nor be eligible for funding from the Student Loans Company. This means you will be classified as an international student. At Royal Holloway, we wish to support those students affected by this change in status through this transition. For eligible EU students starting their course with us in September 2021, we will award an automatic fee reduction which brings your fee into line with the fee paid by UK students. This will apply for the duration of your course.

Fees for international students may increase year-on-year in line with the rate of inflation. The policy at Royal Holloway is that any increases in fees will not exceed 5% for continuing students. For further information see fees and funding and our terms and conditions. Fees shown above are for 2020/21 and are displayed for indicative purposes only.

***These estimated costs relate to studying this particular degree programme at Royal Holloway. Costs, such as accommodation, food, books and other learning materials and printing etc., have not been included.

Accreditation

The Geological Society Logo

On successful completion of this programme you may be eligible to become a fellow of the Geological Society of London.

92% overall student satisfaction

Source: NSS, 2019

9th in the UK for Earth Sciences

Source: Times Good University Guide 2020

93% of our Earth Sciences graduates are employed or in further study within 6 months of graduating

Source: DLHE, 2018

Explore Royal Holloway

Get help paying for your studies at Royal Holloway through a range of scholarships and bursaries.

There are lots of exciting ways to get involved at Royal Holloway. Discover new interests and enjoy existing ones

Heading to university is exciting. Finding the right place to live will get you off to a good start

Whether you need support with your health or practical advice on budgeting or finding part-time work, we can help

Discover more about our 21 departments and schools

Find out why Royal Holloway is in the top 25% of UK universities for research rated ‘world-leading’ or ‘internationally excellent’

They say the two most important days of your life are the day you were born, and the day you find out why

Discover world-class research at Royal Holloway

Discover more about who we are today, and our vision for the future

Royal Holloway began as two pioneering colleges for the education of women in the 19th century, and their spirit lives on today

We’ve played a role in thousands of careers, some of them particularly remarkable

Find about our decision-making processes and the people who lead and manage Royal Holloway today