Key information
Duration: 1 year full time or 2 years part time
Institution code: R72
Campus: Egham
UK fees*: £12,600
International/EU fees**: £22,800
The course
Smart Power Systems (MSc)
This MSc examines the crucial changes in modern power systems today, as well as developments for a sustainable energy future. It will prepare you for the large variety of jobs in the Power System sector, from smart meters and demand side management, load forecasting, distribution or transmission, energy generation, renewables or energy storage.
On completion of this masters you will have an advanced understanding of:
- Current and future Power Systems
- Machine learning, required for many areas of the modern power system
- Coverage of communication systems, vital to modern power systems
- Training in Engineering management and professional practice
This specialised course provides a strong theoretical and practical understanding of electronic and electrical engineering with links to industry-related topics and employability skills.
- You will have the opportunity to gain advanced, research-specific skills and academic knowledge to take forward into further study or into your career.
- You will become part of a dynamic research environment where you will acquire industrially relevant knowledge to make a successful contribution to tomorrow’s systems that support everyday life.
From time to time, we make changes to our courses to improve the student and learning experience. If we make a significant change to your chosen course, we’ll let you know as soon as possible.
Course structure
Core Modules
- Agile Engineering
-
This is a major group project in which students will work on an agreed practical problem that is relevant to tomorrow's societal needs and agreed with their supervisor. The working practice of the groups will be modelled on industrial practices in terms of planning, keeping proper records of meetings and the progress of work, and students will each take on a responsibility within the team that is vital to the professional and successful running of the group project. The overall aim is to provide students with a full appreciation of mechanisms that can support professional group working and its management in engineering practice in the context of exploring and researching solutions to a topic relevant to society.
-
The aim of this module is to provide theoretical and practical knowledge relating to pattern recognition. The indicative content for this module includes the study of fundamental pattern recognition in relation to supervised and unsupervised learning. Topics will include Bayesian decision theory, Artificial Neural Networks and Support Vector Machines (amongst others). The nature of these algorithms will be studied along with engineering techniques for developing smart applications. Further, deep learning for engineering applictions (e.g. classification of electrocardiograms) will be studied. Finally, students will undertake a coursework to an apply an appropriate machine learning methodology to solve a real-world pattern recognition problem.
-
In this module you will develop an understanding of the various types of power generators, focussing on renewable technologies. You will look at the main benefits and drawbacks of different generation types and examine why a generation mix is desirable. You will consider the technical, environmental, sustainability, cost and political factors driving engineering and commercialisation decisions, and evaluate the objectives and constraints that are involved in optimisation procedures for power system applications, such as optimal wind farm layout.
-
The aim of this module is to cover the entire process of using a primary source of energy, converting it to electricity and delivering the generated electricity to where it is required. It provides students with useful knowledge and skills. This course covers the power system basics, such as complex power, calculations including phasors, reactive compensation, power factor, conversion of circuits to phasor domain, instantaneous values, three phase circuits, calculations related to transmission lines, transformers, per unit calculations, synchronous and induction machines, powerflow and optimal power flow. Labs are designed to allow students to actively engage with the covered material and to work through the calculations using Matlab as well as hand calculations.
-
This module covers advanced communications systems, focusing on microwave, optical, and broadband technologies. Students will gain knowledge and understanding of these systems and their applications in high-speed networks. They will learn to analyse complex microwave systems using mathematical and computational tools, such as estimating satellite link budgets. The module also covers the breakdown and categorisation of communication system elements, including high-speed optical data network architectures. Students will study radio propagation, design principles of advanced microwave systems, and sources of degradation, distortion, and losses. Additionally, they will be introduced to the latest CAD tools for evaluating and synthesising practical microwave systems.
-
The aim of this module is to provide students with the opportunity to carry out an in-depth engineering project, potentially in collaboration with industry, to solve a real-world problem or create a novel product. For specialised MScs, the project will be related to the specialisation topic.
Optional Modules
-
All modules are core
Teaching & assessment
This MSc consists of eight modules and a dissertation. Teaching follows several different complementary models: face-to-face, online, pre-recorded, workshops, presentations, practical sessions, labs. Assessments cover a variety of activities: groupwork, presentations, reports, Moodle quizzes, etc. Across the four MScs, examples and case-studies are international and cover many different backgrounds. Modules feature built-in formative assessments (e.g. Moodle quizzes, workshops, presentations) that complement and lead up to summative assessment.
Students have a close relationship with their tutors, and with the teaching staff in general, which means they have many opportunities for feedback. They receive oral feedback in workshops, presentations, practical sessions, and labs.
Entry requirements
2:2
A relevant Technology, Computing, Power, or Systems Engineering background
Normally we require a UK 2:1 (Honours) or equivalent in relevant subjects but we will consider high 2:2 or relevant work experience. Candidates with professional qualifications in an associated area may be considered. Where a ‘good 2:2’ is considered, we would normally define this as reflecting a profile of 57% or above. A Technology, Computing, Power, or Systems Engineering background
International & EU requirements
English language requirements
All teaching at Royal Holloway is in English. You will therefore need to have good enough written and spoken English to cope with your studies right from the start.
The scores we require
- IELTS: 6.5 overall. Writing 7.0. No other subscore lower than 5.5.
- Pearson Test of English: 61 overall. Writing 69. No other subscore lower than 51.
- Trinity College London Integrated Skills in English (ISE): ISE III.
- Cambridge English: Advanced (CAE) grade C.
- TOEFL ib: 88 overall, with Reading 18 Listening 17 Speaking 20 Writing 26.
Country-specific requirements
For more information about country-specific entry requirements for your country please see here.
Your future career
Seeking a Power System degree, taking you beyond the traditional content, considering the crucial changes, already implemented in modern Power Systems today, as well as future developments? This course is for you. It will ready you for the large variety of jobs in the Power System sector, be it Smart Meters & Demand side management, Load forecasting, Distribution or Transmission, Energy generation, including a wide range of renewables, or energy storage.
We look forward to finding out about the exciting path you will chose for your future and supporting you on your journey.
Fees, funding & scholarships
Home (UK) students tuition fee per year*: £12,600
EU and international students tuition fee per year**: £22,800
Other essential costs***: There are no single associated costs greater than £50 per item on this course.
How do I pay for it? Find out more about funding options, including loans, grants, scholarships and bursaries.
* and ** These tuition fees apply to students enrolled on a full-time basis. Students studying on the standard part-time course structure over two years are charged 50% of the full-time applicable fee for each study year.
All postgraduate fees are subject to inflationary increases. This means that the overall cost of studying the course via part-time mode is slightly higher than studying it full-time in one year. Royal Holloway's policy is that any increases in fees will not exceed 5% for continuing students. For further information, please see our terms and conditions. Please note that for research courses, we adopt the minimum fee level recommended by the UK Research Councils for the Home tuition fee. Each year, the fee level is adjusted in line with inflation (currently, the measure used is the Treasury GDP deflator). Fees displayed here are therefore subject to change and are usually confirmed in the spring of the year of entry. For more information on the Research Council Indicative Fee please see the RCUK website.
** The UK Government has confirmed that EU nationals are no longer eligible to pay the same fees as UK students, nor be eligible for funding from the Student Loans Company. This means you will be classified as an international student. At Royal Holloway, we wish to support those students affected by this change in status through this transition. For eligible EU students starting their course with us during the academic year 2023/24, we will award a fee reduction scholarship equivalent to 30% of the difference between the UK and international fee for your course. This will apply for the duration of your course. Find out more
*** These estimated costs relate to studying this particular degree at Royal Holloway during the 2022/23 academic year, and are included as a guide. Costs, such as accommodation, food, books and other learning materials and printing, have not been included.