Skip to main content

Zoology with a Year in Industry

Thank you for considering an application

Here's what you need in order to apply:

  1. Royal Holloway's institution code: R72
  2. Make a note of the UCAS code for the course you want to apply for:

    • Zoology with a Year in Industry BSc - C302
    • Zoology BSc - C300
  3. Click on the link below to apply via the UCAS website:
Apply via UCAS

Zoology with a Year in Industry

BSc

Course options

Key information

Duration: 4 years full time

UCAS code: C302

Institution code: R72

Campus: Egham

Key information

Duration: 3 years full time

UCAS code: C300

Institution code: R72

Campus: Egham

View this course

The course

Zoology with a Year in Industry (BSc)

It’s hard not to marvel at the diversity of the natural world. From the smallest insect to the largest mammal, Zoology at Royal Holloway, University of London explores how each and every creature has a role to play in the ecology of our planet.

The programme examines animal evolution, physiology and diversity, developing your understanding of how animals behave, how they function and how they interact with their environments. A combination of field and lab-based learning lets you make the most of our state-of-the-art mass spectrometry, proteomics and metabolomics facilities, while our marine and freshwater aquaria, glasshouses and plant and animal cell culture facilities mean you can study a diverse range of animal specimens.

Nearby sites of national scientific importance including Windsor Great Park, Box Hill and Chobham Common give you access to biodiverse habitats ideal for fieldwork, while a flexible programme structure lets you choose from a range of courses, even within your first year.

100% of our research impact in the Department  of Biological Sciences was judged to be 4* and 3* world-leading and internationally excellent in terms of its originality, significance and rigour in the latest Research Excellence Framework (REF, 21). This places the department in the top 25% of departments nationally for research impact and you’ll become a part of this renowned research culture as you complete your fourth year research project. Zoology students join a friendly, welcoming learning environment with a high staff-to-student ratio, allowing for small group and even one-on-one tuition to maximise your learning.

The transferable skills you’ll learn studying Zoology will make you an attractive prospect to employers in a range of sectors, helping you to join Royal Holloway alumni in areas including environmental monitoring and practical conservation.

Our year in industry degrees are highly valued by employers and they give you the chance to gain first-hand experience of the world of work and to apply your learning to real-world scenarios. Your year in industry will start at the end of year 2.

  • Field courses in marine biology, practical field ecology, Mediterranean conservation and ecology, and the tropical ecosystems of the Borneo rainforest.
  • Flexible programme structure with a range of courses to personalise your learning in each year of study.
  • Learn how ecologists investigate the behaviour of animals and recent advances in behavioural ecology research.
  • Enhance your skills in scientific illustration, microscope use, identification and animal handling.
  • Learn how to organise data in a logical, presentable and persuasive way.

From time to time, we make changes to our courses to improve the student and learning experience. If we make a significant change to your chosen course, we’ll let you know as soon as possible.

Core Modules

Year 1
  • In this module you will develop an understanding of key scientific concepts and effective science communication. You will learn how to process and critique different forms of information, and how to communicate science to both scientific and non-scientific audiences using diverse media, forms and methods. You will also examine ethical issues surrounding research and intervention.

  • In this module you will develop an understanding of prokaryotic and eukaryotic cell biology and the key functions of these structures and organelles. You will look at the origin of life and the principles of natural selection and evolution. You will also learn the practical technique involved in microscopy, including fixation techniques for the analysis of cell ultrastructure and aseptic techniques for bacterial culture.

  • In this module you will develop an understanding of genes and their behaviour in individuals organisms, in populations, and at the molecular level within the cell. You will look cellular genetics with respect to mitosis, meiosis, inheritance and recombination, and consider the fundamentals of gene expression, its control, and DNA replication. You will examine genome organisation, transcription, and translation, and gain practical experience of using techniques in microscopy, including slide preparation for the observation of chromosomes.

  • In this module you will develop an understanding of the key concepts of ecology and conservation, working up from organisms to populations and their interactions, through to communities and ecosystems. You will look at ecological patterns and processes and consider the fundamental interactions between species and their abiotic environment. You will also gain practical experience in using ecological sampling techniques, carrying out biostatistical analyses and experimental design.

  • In this module you will develop an understanding of the fundamental physiological systems that are required to maintain complex multi-cellular animals, specifically those involved in communication, transport and homeostasis. You will look at how systems and specialised organs have evolved and interact to obtain oxygen from the environment whilst maintaining optimal internal conditions for cellular function. You will consider the mechanisms, organisation, functions and integration of the nervous and endocrine systems to show how neural (somatic and autonomic) and hormonal signalling enable an animal to sense and respond both consciously (e.g. movement) and unconsciously (e.g. internal homeostasis). You will also examine the evolution of the closed circulatory system, separated into pulmonary and systemic circuits and driven by a four-chambered heart, essential for the body-wide distribution of nutrients, oxygen and hormones, and for the removal of waste products.

  • In this module you will develop an understanding of origins of the vertebrate classes and their evolutionary history. You will look at functional aspects of the key morphological and physiological adaptations of vertebrates to life in water, on land and in the air. You will examine the processes of evolution, phylogeny, physiology and biomechanics of vertebrates, and consider the general anatomical organisation of chordates and vertebrates.

  • This module will describe the key principles of academic integrity, focusing on university assignments. Plagiarism, collusion and commissioning will be described as activities that undermine academic integrity, and the possible consequences of engaging in such activities will be described. Activities, with feedback, will provide you with opportunities to reflect and develop your understanding of academic integrity principles.

     

Year 2
  • In this module you will develop an understanding of invertebrate phyla, looking at their structure, diversity, levels of complexity, life styles, and evolutionary relationships. You will primarily examine body-plans and how structure relates to behaviour, but also consider invertebrate diversity and their ecological importance. You will learn to stain, mount, and interpret microscopic specimens and enhance your skills in scientific illustration, microscope use, identification and animal handling.

  • In this module you will develop an understanding of the use of statistical methods in biological sciences. You will examine how questions in biology can be answered using quantitative methods, looking at key concepts of statistical sampling and experimental design. You will consider how to select appropriate tests, how to apply them, and identify what can be deduced from them.

  • In this module you will develop an understanding of the causation, development, function and evolution of animal behaviour, assessing the variety of behaviour occurring across the range of animal taxa and in different ecological situations. You will examine the major theories that seek to explain animal behaviour, such as kin selection, optimal foraging and game theory. You will look at the main methods used to study behaviour, including observation, experiment and the comparative approach, and consider how they can be applied to the study of different types of behavioural questions.

  • In this module you will develop an understanding of how organisms have changed through time. You will look at the historical origins of the modern concept of evolution, examining the evidence for it and the processes that have shaped faunas and floras. You will consider Darwinism and its development, the origin and maintenance of variation, and adaptation and selection. You will analyse how evolution can be studied using phylogenetic methods and the mechanisms of speciation, with a focus on human evolution.

Year 3
  • The aim of the Year in Industry is to provide the opportunity to gain experience in a working environment, increasing your confidence, expanding your skills and boosting your attractiveness to future employers. Placements can be taken in a variety of settings, as appropriate to your interests and relevance to the degree programme. Possible settings include the research laboratories of an industrial or research institute employer; you will experience the thrill of conducting research as well as gaining an insight into the process of acquiring funding, organising projects, presenting and publishing results. Other possible placements include with environmental organisations or consultancies, enabling you to gain a first-hand perspective on the work of the organisation, and to become part of the team during your placement year. You will take responsibility for sourcing a suitable placement, with support from the School and College; from this experience you will learn about employers’ recruitment priorities. The placement year provides the opportunity to develop and strengthen a range of professional skills and attributes.

     

Year 4
  • You will carry out an individual laboratory or theoretical investigation, supervised by an appropriate member of staff, who will provide guidance throughout. You will apply the knowledge and skills learned throughout your studies, and learn to organise data in a logical, presentable and persuasive way. You will produce a report, around 8,000 words in length, and will deliver an oral presentation with a summary of your findings.

  • In this module you will develop an understanding of the physiological mechanisms underpinning adaptation to hostile environmental conditions such as anoxia, high hydrostatic pressure and extreme temperatures. You will look at how animals perform extreme feats such as high-speed running, flying, and swimming, perform long-distance migrations, and enter periods of hibernation and torpor. You will also consider how physiology, morphology and anatomy combine to allow survival in harsh environments and make extreme behaviours possible.

Optional Modules

There are a number of optional course modules available during your degree studies. The following is a selection of optional course modules that are likely to be available. Please note that although the College will keep changes to a minimum, new modules may be offered or existing modules may be withdrawn, for example, in response to a change in staff. Applicants will be informed if any significant changes need to be made.

Year 1
  • In this module you will develop an understanding of the basics of biochemistry. You will look at some of the key techniques for biochemical analysis, including spectroscopy, and the fundamentals of protein structure. You will examine structure / function relationships in myoglobin, hemoglobin and the serine proteases, and learn to solve biochemical kinetic problems using the Michaelis-Menten equation. You will also consider how to solve thermodynamic problems, including equilibrium constants. 

  • In this module you will develop an understanding of the main concepts of classic protein biochemistry including protein purification, enzyme kinetics, and enzyme structure. You will look at the basic principles behind a number of protein purification techniques, and consider basic enzyme kinetics using the Michaelis-Menten equation and derived methods to analyse kinetic data. You will examine the underlying biochemistry of a variety of analytical methods and their applications in research and diagnostics, gaining practical experience in performing some of these methods in laboratory practicals. You will also analyse the concept of biochemical buffers and learn how to make these from stock solutions.

  • This module will explain the function of some organ systems in humans and illustrates the consequence of disease on physiological function. The module will begin by explaining the structure, organisation and function of key brain structures, and how special sensory systems convert light, sound and position/movement into electrical signals that are transmitted to the brain: including how our ability to sense the environment can be disrupted by disease. This will be followed by an explanation of the function and regulation of the mammalian kidney and the lungs, and the roles of the adrenal gland. The module then covers aspects of basic haematology; the fluid and formed elements of blood and their role in inflammation and the control of bleeding following vessel damage. The module will end with an introduction to skeletal muscle function and its neural regulation, how movement is controlled and sensed by the somatic nervous system.This module will explain the function of some organ systems in humans and illustrates the consequence of disease on physiological function. The module will begin by explaining the structure, organisation and function of key brain structures, and how special sensory systems convert light, sound and position/movement into electrical signals that are transmitted to the brain: including how our ability to sense the environment can be disrupted by disease. This will be followed by an explanation of the function and regulation of the mammalian kidney and the lungs, and the roles of the adrenal gland. The module then covers aspects of basic haematology; the fluid and formed elements of blood and their role in inflammation and the control of bleeding following vessel damage. The module will end with an introduction to skeletal muscle function and its neural regulation, how movement is controlled and sensed by the somatic nervous system.

  • In this module you will develop an understanding of how biological and ecological principles can help develop sustainable solutions to the problems encountered in the 21st Century. You will look at how ecological principles can be used to tackle conservation challenges and consider the importance of ongoing management of ecosystems which have been altered by humans. You will gain practical experience in using ecological sampling techniques and learn how to apply and interpret elementary statistical tests.

  • In this module you will develop an understanding of global biomes and ecosystems as well as biogeochemical cycles and energy flow through them. You will look at the key features of UK ecosystems and consider current ecological issues. You will examine the major principles of ecological science and gain practical experience in using sampling techniques, biostatistical analyses and experiemental design. You will also analyse variation in climate around the globe, aquatic and terrestrial ecosystsems, ecosystem services and habitat conservation.

  • In this module you will develop an understanding of the fundamental chemistry of life processes and laboratory experiments. You will look at the basics of biological chemistry, including the chemical bonding and reactivity of important biomolecules, intermolecular forces, 3D structure and isomerism. You will analyse equilibria in acid/base biochemistry and solve related problems. You will also learn the basic biochemical lab techniques and carry out consequent data analysis.

Year 2
  • In this module you will develop an understanding of some of the key concepts in microbiology, including the study of bacteria, viruses, and eukaryotic microbes. You will look at how microbes are distinguished and classified, and discuss bacterial growth and differentiation. You will examine the importance of microorganisms in health and disease, including human welfare issues such as opportunistic infections and the role of microorganisms in cancer.

  • In this module you will develop an understanding of the key methologies used in cell biology, becoming familar with modern microscopy techniques and live cell imaging studies. You will look at the basic mechanisms that regulate the cell cycle and the regulatory mechanisms for DNA synthesis and mitosis. You will examine mitochondria and chlorpolast organelle functions, and the principles of polar bodies and asymmetric cell division. You will assess the basic mechanisms underlying cell shape and mobility, and consider the evolutionary constrains of cellular functions.

  • In this module you will develop an understanding of the function and integration of selected human physiological systems in normal physiology and disease. You will look at endocrine control in the human body, specifically the role of the hypothalamo-pituitary axis and the function and regulation of thyroid hormones. You will examine the organisation and integration of the nervous, cardiovascular, respiratory and systems and the principles of whole muscle physiology. You will also consider the composition and functions of blood and haemostasis, and the analysis and interpretation of physiological experiments.

  • In this module you will develop an understanding of the processes that lead from a fertilised egg into complex tissues and organisms with well-defined body plans. You will look at the basic cellular and genetic mechanisms that regulate development, and the evolutionary outcomes of developmental changes. You will examine model organisms in which both embryological and genetic approaches have been developed, and will explore axis establishment, segmentation, cellular differentiation, organ development, and the widely-shared signalling pathways that underpin them.

  • In this module you will develop an understanding of the effects of herbivorous insects on plants and the ways in which plants defend themselves against attack. You will consider how insects can be beneficial to plants, examining their role in pollination, and how fungi mediate interactions between insects and their hosts, including pathogens, endophytes and mycorrhizas.

  • In this module you will develop an understanding of how to design and analyse ecological experiments. You will perform simple investigations into several different taxonomic groups such as mammals, invertebrates and plants, and consider the difficulties of designing experiments in the field, compared to controlled conditions. You will gain experience with techniques such as field sampling, identification using keys, and quantitative population estimation, as you carry out fieldwork in and around the College campus, with some daily excursions.

  • In this module you will develop an understanding of the molecular tools and techniques currently available to investigate the genetic diversity of a range of organisms. You will examine how genetically modified organisms can be produced via a number of methodologies, and will consider their application in areas such as crop improvement, pest management, and vaccine development. You will also look at how molecular genetics has improved our understanding of human inherited diseases and led to the development of human gene therapies.

  • In this module you will develop an understanding of the physical and chemical characteristics of the marine environment and their influence on marine organisms. You will look at of a broad range of marine taxa, in particular invertebrates, but also vertebrates and algae, sampled alive from their natural habitats. You will carry out intertidal sampling (rocky and sandy shores) and sampling from a research vessel (plankton and subtidal benthos), gaining experience of collecting and identifying a range of littoral organisms. You will consider behavioural, ecological and physiological aspects, morphological adaptations, systematic relationships and also the economic significance of selected groups.

  • In this module you will develop an understanding of the chemical structure of DNA and RNA, and how genes are organised and expressed. You will look at gene characterisation using recombinant DNA technology, and will consider DNA as a template for RNA synthesis. You will also become familiar with molecular biology techniques that are widely used in the life sciences, including the preparation and handling of purified DNA, restriction enzyme digestions, and polymerase chain reaction.

  • In this module you will develop an understanding of the mammalian immune systems at cellular and molecular levels, and how this is determined by antibody structure and function, the complement system, and the impact of immunoglobulin genetics. You will look at the role of T cells as effectors and regulators of immune responses, allergic reactions, transplant rejection, and the HIV virus and the pathogenesis of AIDS on the immune system. You will examine antipody antigen reaction techniques used in immunology, and consider the isolation and purification of lymphocytes, their morphology and abundance.

  • You will carry out a literature research project on a biological or biochemical topic of your choice, producing a written report around 5000 words in length. You will critically evaluate recent scientific publications on your chosen topic, highlighting how data has been used to generate and test hypotheses.

Year 4
  • In this module you will develop an understanding of the principles of parasitism and the protective mechanisms used by immuno-competent hosts to limit the spread of infection. You will look at the biological strategies used by a range of unicellular and multicellular organisms to colonise host causing disease in human and non-human hosts. You will consider studies on the pathology and the cellular immunity elicited by various parasites, and the immune evasion strategies used by widely distributed human parasites to protect themselves from immune attack. You will also address the principles and prospects of anti-parasitic vaccination in the 21st Century.

  • This module covers the biological basis of the great threats to biodiversity – habitat loss and fragmentation, intensive agriculture, natural resource exploitation, disease and global climate change – and the approaches developed by conservation scientists to overcome these threats at local and global scales. The potential for subjectivity in conservation decision-making and the crucial importance of science-based conservation is stressed. Practical work is part of the assessment and involves writing a management plan for a critically endangered species.

  • This module will take place in the tropical rainforest of Malaysian Borneo, with a focus on animal behaviour. You will work in and around the Dinau Girang Field Centre to learn about tropical rainforest ecology. There are many fascinating species of plants and animals in the rainforest, and this is an opportunity to see some of them in their natural habitat, and to learn about the conservation challenges to maintaining the natural ecosystem. The course runs in September (at the end of the summer vacation between Y2 and Y3) for 10 days. It is likely to cost in the region of £800. Students will also need to pay for their travel to Borneo.

  • In this module you will develop an understanding of the principles of population and community ecology, focussing on the forces which structure communities of animals and plants. You will look at population growth, inter- and intra-specific competition, trophic relations and the factors which regulate populations, and will examine the ecological processes that contribute to community organisation, such as food web structure, body size, succession and natural disturbances. You will also consider the role of population and community ecology in the maintenance of biodiversity.

  • In this module you will develop an understanding of the diversity habitats in the marine environment and the range of responses seen in marine biota. You will look at the diversity of organisms, considering the key processes operating in coral reefs, the deep ocean and hydrothermal vent systems. You will consider the behaviour and conservation of marine species, the impact of marine pollution and climate change on marine biodiversity, and examine the adaptation of mammals to marine life.

  • In this module you will develop an understanding of the historical background of major questions in evolutionary ecology, focussing on studies using vertebrate systems. You will look at the interactions between and within species and consider the evolutionary effects of competitors, mutualists, predators, prey and pathogens. You will examine specific topics such as life-history theory, evolutionary medicine, phenotypic plasticity, ecological specification and the evolution of sex.

  • In this module you will develop an understanding of the physiological mechanisms underpinning adaptation to hostile environmental conditions such as anoxia, high hydrostatic pressure and extreme temperatures. You will look at how animals perform extreme feats such as high-speed running, flying, and swimming, perform long-distance migrations, and enter periods of hibernation and torpor. You will also consider how physiology, morphology and anatomy combine to allow survival in harsh environments and make extreme behaviours possible.

  • In this module you will develop an understanding of the variety of rhythms in nature and their importance. You will look at the rhythms throughout biology, in microbes, plants and animals, and consider the impact of the internal circadian clock on behaviour, physiology, environmental responses and wider implications for fitness. You will examine how the clock interacts with environmental signals, how the clock can be set to the right time, how the clock can moderate environmental responses, and how the clock can allow measurement of day length for the timing of annual events.

  • The ability to manipulate genes provides one of the most important advances in modern research since the discovery of the structure and function of DNA. This process, called genetic engineering, is critical for biomedical research since it has enabled an improved understanding of the role of proteins at both a cellular and organismal level – through gene deletion or through the introduction or removal of disease-associated mutations. This module will provide an advanced-level course on Genetic Engineering. The module will focus on the use of Genetic Engineering in a range of systems including a simple non-animal model (Dictyostelium), and both in vitro and in vivo animal systems. The course will describe the use of these models for Genetic Engineering research, the underlying principles in the research, and the practical application of this research in areas of human health and disease, with a particular focus on current advances in these areas.

  • In this module you will develop an understanding of advanced concepts and recent advances in fundamentally important areas of cell biology relevant to cancer, including developments in microscopy, imaging and molecular genetic techniques. You will look at current concepts in molecular cell biology, such as cell-cell adhesion and signaling, stem cells in development and in diseases, and cancer and the role of the cytoskeleton. You will examine topics in cancer biology including oncogenes, tumour suppressor genes and caretaker genes, and the signaling and regulatory pathways these are involved in. You will also examine the diagnosis and rationale of cancer therapies.

  • In this module you will develop an understanding of human embryos and the development and function of particular endocrine systems. You will look at embryonic development, including gastrulation and specification of the axes, and the initial steps in the formation and patterning of the brain and spinal cord. You will examine craniofacial development, pharyngeal gland formation and sex determination, analysing the cellular and molecular processes involved in detail. You will also consider some of the birth defects that can arise, the genetic and environmental insults that cause them, and investigations which inform their prevention.

Each year you will take modules worth a total of 120 credits, with most individual modules worth 15 credits. In your final year, your Individual Research Project is worth 30 credits.

The first year is formative, while outcomes of your second and fourth year contribute one third and two-thirds of your final degree classification respectively.

You will attend a mixture of lectures, seminars and small-group tutorials, with class sizes that range from 6 to 180 students. Practical classes are a major part of all first and second year modules, and include experiments that are integral to the subject, helping to familarise you with the material and augment your understanding of key topics. These are either laboratory-based or field-based with laboratory follow-up. In your fourth year, you will complete an individual research project supervised by one of our academics, and you may have the opportunity to contribute towards a published scientific paper. The individual research project is assessed on the basis of a written report, supervisor assessment, and an oral presentation.

During your first and second years, you will complete essays and reports, and sit written examinations. Year three is the placement year. In your fourth year, assignments include a range of activities, such as preparation of posters, oral presentations, creation of leaflets and podcasts, coursework essays, mock research grant applications and scientific news-and-views articles, as well as analysis of data from online repositories in mini-research projects.

A Levels: BBB-BBC

Required subjects:

  • A-level Biology, plus a pass in the practical element.
  • At least five GCSEs at grade A*-C or 9-4 including English and Mathematics.

English language requirements

All teaching at Royal Holloway is in English. You will therefore need to have good enough written and spoken English to cope with your studies right from the start.

The scores we require
  • IELTS: 6.5 overall, with no subscore lower than 5.5.
  • Pearson Test of English: 61 overall. No subscore lower than 51.
  • Trinity College London Integrated Skills in English (ISE): ISE III.
  • Cambridge English: Advanced (CAE) grade C.

Country-specific requirements

For more information about country-specific entry requirements for your country please visit here.

Undergraduate preparation programme

For international students who do not meet the direct entry requirements, for this undergraduate degree, the Royal Holloway International Study Centre offers an International Foundation Year programme designed to develop your academic and English language skills.

Upon successful completion, you can progress to this degree at Royal Holloway, University of London.

By studying Zoology with us you’ll gain the invaluable skills and experience you need to work in a wide range of sectors, with a combination of lab experience and independent research making you an attractive prospect for potential employers. You can also go on to further education like Graduate Entry Veterinary Medicine or study for a Masters in our vibrant scientific community at Royal Holloway.

The Department of Biological Sciences is a close-knit community, with our alumni regularly returning to share their knowledge and experience with current students.

Home (UK) students tuition fee per year*: £9,250

The fee for your year in industry will be 20% of the course fee for that academic year.

EU and international students tuition fee per year**: £28,900

The fee for your year in industry will be 20% of the course fee for that academic year.

Other essential costs***: Students are recommended to purchase a laptop before starting their course, to assist with their studies. The optional residential field courses incur an extra fee.

How do I pay for it? Find out more about funding options, including loans, scholarships and bursaries. UK students who have already taken out a tuition fee loan for undergraduate study should check their eligibility for additional funding directly with the relevant awards body.

*The tuition fee for UK undergraduates is controlled by Government regulations. The fee for the academic year 2024/25 is £9,250 and is provided here as a guide. The fee for UK undergraduates starting in 2025/26 has not yet been set, but will be advertised here once confirmed. 

**This figure is the fee for EU and international students starting a degree in the academic year 2025/26.  

Royal Holloway reserves the right to increase tuition fees annually for overseas fee-paying students. The increase for continuing students who start their degree in 2025/26 will be 5%.  For further information see fees and funding and the terms and conditions.

*** These estimated costs relate to studying this particular degree at Royal Holloway during the 2025/26 academic year and are included as a guide. Costs, such as accommodation, food, books and other learning materials and printing, have not been included. 

Accreditation

Royal Society of Biology

We value practical teaching which is why this course is accredited by the Royal Society of Biology. This means your qualification is recognised in the industry, giving you a competitive edge when applying for jobs.

100%

students agreed staff are good at explaining things

Source: NSS, 2023

100%

of Biological Sciences research rated world leading or internationally excellent.

Source: REF, 2021

Top 30

UK Biological Sciences department

Source: The Complete University Guide, 2024

Explore Royal Holloway

Arrivals Sept 2017 77 1.jpg

Get help paying for your studies at Royal Holloway through a range of scholarships and bursaries.

clubs-societies_REDUCED.jpg

There are lots of exciting ways to get involved at Royal Holloway. Discover new interests and enjoy existing ones.

Accommodation home hero

Heading to university is exciting. Finding the right place to live will get you off to a good start.

Support and wellbeing 2022 teaser.jpg

Whether you need support with your health or practical advice on budgeting or finding part-time work, we can help.

Founders, clock tower, sky, ornate

Discover more about our academic departments and schools.

REF_2021.png

Find out why Royal Holloway is in the top 25% of UK universities for research rated ‘world-leading’ or ‘internationally excellent’.

Immersive Technology

Royal Holloway is a research intensive university and our academics collaborate across disciplines to achieve excellence.

volunteering 10th tenth Anniversary Sculpture - research.jpg

Discover world-class research at Royal Holloway.

First years Emily Wilding Davison Building front view

Discover more about who we are today, and our vision for the future.

RHC PH.100.1.3 Founders south east 1886.w

Royal Holloway began as two pioneering colleges for the education of women in the 19th century, and their spirit lives on today.

Notable alumni Kamaladevi Chattopadhyay

We’ve played a role in thousands of careers, some of them particularly remarkable.

Governance

Find about our decision-making processes and the people who lead and manage Royal Holloway today.