We use cookies on this site. By browsing our site you agree to our use of cookies. Close this message Find out more

Home > Courses > Undergraduate > Economics and Mathematics
More in this section Economics

Economics and Mathematics BSc

Please note that information shown below may be subject to change.

UCAS code
LG11
Year of entry
2019
View 2018 entry »
Course length
3 years full time
Department
Economics »
Mathematics »

Studying Economics and Mathematics at Royal Holloway means that you will learn from internationally renowned experts at two of the UK’s top ten teaching and research centres. Economic analysis relies increasingly on mathematical foundations and this joint degree combines the core program of both subjects. Optimal individual behaviour is found through the use of calculus, the dynamic properties of economics are studied with difference and differential equations, and important results in welfare economics are established from topological properties. Advanced mathematics and computing are vital for businesses in determining the best strategy. This degree provides the knowledge and transferable skills for a career in business or finance.

In your studies you will consider the analysis of individual behaviour and markets, with options in financial and industrial economics and other fields; you will learn how to analyse data and understand the fundamental properties of the mathematics used, from calculus to probability and statistics, graphs and optimisation and financial mathematics.

Our balanced approach to research and teaching guarantees high quality teaching from subject leaders, cutting edge materials and intellectually challenging debates.  The course follows a coherent and developmental structure which is combined with an effective and flexible approach to study.

  • Excellent career prospects; both economics and mathematics have impressive employment record sand graduates’ starting salaries are amongst the highest in the country.
  • Flexibility to specialise in areas, including: economics in warfare, probability economics: financial econometrics, economic growth, rings and factorisation, complex variable and quantum theory II.
  • Quality research and teaching;one of only two Economics departments in the country placed in the top ten for both research and student satisfaction and the Mathematics department is 2nd in the UK for research impact (Research Assessment Exercise, 2014 and National Student Survey 2015).
  • Inspiring close community: Royal Holloway has a friendly and relaxing community environment where everyday interactions with student and staff from different departments and nationalities are a norm.

Core modules

Year 1

The core modules in Economics are:

Principles of Economics

In this module you will develop an understanding of the theories of macroeconomics, that of the economy as a whole, and of microeconomics, the behaviour of individuals, firms and governments. You will look at how the goods and assests markets underpin growth, inflation and unemployment, and the role that fiscal and monetary policy play in macroeconomic managemenet. You will examine the theoretical basis to supply and demand and the role of government intervention in individual markets. You will consider how to solve economic problems by manipulating a variety of simple diagrammatic and algebraic models in macro- and microeconomics, critically evaluating the models and their limitations.

Post-Crisis Economics

The core modules in Mathematics are:

Mathematics: Principles of Statistics

In this module you will develop an understanding of the notion of probability and the basic theory and methods of statistics. You will look at random variables and their distributions, calculate probabilities of events that arise from standard distributions, estimate means and variances, and carry out t tests for means and differences of means. You will also consider the notions of types of error, power and significance levels, gaining experience in sorting a variety of data sets in a scientific way.

Mathematics: Calculus

In this module, you will develop an understanding of the key concepts in Calculus, including differentiation and integration. You will learn how to factorise polynomials and separate rational functions into partial fractions, differentiate commonly occurring functions, and find definite and indefinite integrals of a variety of functions using substitution or integration by parts. You will also examine how to recognise the standard forms of first-order differential equations, and reduce other equations to these forms and solve them.

Mathematics: Functions of Several Variables

In this module you will develop an understanding of the calculus functions of more than one variable and how it may be used in areas such as geometry and optimisation. You learn how to manipulate partial derivatives, construct and manipulate line integrals, represent curves and surfaces in higher dimensions, calculate areas under a curve and volumes between surfaces, and evaluate double integrals, including the use of change of order of integration and change of coordinates.

Mathematics: Number Systems

In this module you will develop an understanding of the fundamental algebraic structures, including familiar integers and polynomial rings. You will learn how to apply Euclid's algorithm to find the greatest comon divisor of two integers, and use mathematical induction to prove simple results. You will examine the use of arithmetic operations on complex numbers, extract roots of complex numbers, prove De Morgan's laws, and determine whether a given mapping is bijective.

Mathematics: Matrix Algebra

In this module you will develop an understanding of basic linear algebra, in particular the use of matrices and vectors. You will look at the basic theoretical and computational techniques of matrix theory, examining the power of vector methods and how they may be used to describe three-dimensional space. You will consider the notions of field, vector space and subspace, and learn how to calculate the determinant of an n x n matrix. 

Year 2

The core modules in Economics are:

Microeconomics

In thid module you will develop an understanding of the models of individual optimisation and their applications. You will look at the key determinants of an individual’s behaviour in a variety of circumstances and the behaviour of firms in different market environments, such as perfect competition, monopoly and oligopoly. You will consider how changing circumstances and new information influences the actions of the economic agents concerned, and examine the properties of competitive markets and the need for government intervention to correct market failures.

Macroeconomics

In this module you will develop an understanding of macroeconomics and macroeconomic policy-making. You will look at a variety of contemporary and historical macroeconomic events, and the differences between the short, medium and long run. You will consider why some countries are rich and some are poor, why different economies grow at different rates, and what determines economic growth and prosperity. You will examine the role of monetary and fiscal policy, its impact on the economy and its limitations. You will also analyse how taxation, budget deficits, and public debt affect the economy.

The core modules in Mathematics are:

Mathematics: Statistical Methods

In this module you will develop an understanding of statistical modelling, becoming familiar with the theory and the application of linear models. You will learn how to use the classic simple linear regression model and its generalisations for modelling dependence between variables. You will examine how to apply non-parameric methods, such as the Wilxocon and Kolmogorov-Smirnov goodness-of-fit tests, and learn to use the Minitab statistical software package.

Mathematics: Graphs and Optimisation

In this module you will develop an understanding of the basic concepts of graph theory and linear programming. You will consider how railroad networks, electrical networks, social networks, and the web can be modelled by graphs, and look at basic examples of graph classes such as paths, cycles and trees. You will examine the flows in networks and how these are related to linear programming, solving problems using the simplex algorithm and the strong duality theorem.

Year 3

All modules are optional

Optional modules

In addition to these mandatory course units there are a number of optional course units available during your degree studies. The following is a selection of optional course units that are likely to be available. Please note that although the College will keep changes to a minimum, new units may be offered or existing units may be withdrawn, for example, in response to a change in staff. Applicants will be informed if any significant changes need to be made.

Year 1

Only core modules are taken

Year 2

Optional modules in Economics include:

Financial Markets and Insitutions

In this module you will develop an understanding of the economic principles underlying the working of national and international financial institutions. You will look at what a financial system is and does, and the distinct functions of each component. You will consider the key financial instruments and the relationship between assets, agents, and institutions, and learn to solve simple problems using quantitative and graphical tools. You will critically evaluate country differences and analyse the interdependencies and rapid change of the modern financial world.

Industrial Growth and Competition

In this module you will develop an understanding of the principal-agent problem, the Coase theorem, theories of the firm, the role of transaction costs, moral hazard, adverse selection, and issues surrounding organisation, investment, governance and expansion of corporations. You will look the role of incentivisation and how conflicts of interests shape economic interactions. You will consider the role of transaction costs in determining the existence, scale and scope of firms, and examine why government regulation may be inferior to market solutions when dealing with externalities. You will also analyse the developments of Anglo-American industrial and Japanese capitalism.

Personnel Economics

In this module you will develop an understanding of the basic theoretical models of personnel economics and how these can be applied to policy issues. You will look at contracts between firms and their workers, focussing on hiring, training, pay, job assignments, promotion, quits and dismissals, and pensions. You will consider the nature of labour contracts, and use statistical analysis to examine the empirical relevance of different types of contract. 

Economic Growth

In this module you will develop an understanding of the process of economic growth at the world level, and the sources of income and growth differences across countries. You will look at Piketty's work on income distribution and economic growth, Malthus' work on population and economic growth, and Solow's standard economic growth model. You will examine why some countries are rich and some are poor, and consider the differences between countries that explain economic success and failures.

Optional modules in Mathematis include:

Mathematics: Vector Analysis and Fluids

In this module you will develop an understanding of the concepts of scalar and vector fields. You examine how vector calculus is used to define general coordinate systems and in differential geometry. You will learn how to solve simple partial differential equations by separating variables, and become familiar with how these concepts can be appield in the field of dynamics of inviscid fluids.

Mathematics: Probability

In this module you will develop an understanding of the basic principles of the mathematical theory of probability. You will use the fundamental laws of probability to solve a range of problems, and prove simple theorems involving discrete and continuous random variables. You will learn how to forumulate an explain fundamental limit theorems, such as the weak law of large numbers and the central limit theorem.

Mathematics: Ordinary Differential Equations and Fourier Analysis

In this module you will develop an understanding of the concepts arising when the boundary conditions of a differential equation involve two points. You will look at eingenvalues and eingenfunctions in trigonometric differenital equations, and determine the Fourier series for a periodic function. You will learn how to manipulate the Dirac delta-function and apply the Fourier transform. You will also examine how to solve differential equations where the coefficients are variable.

Mathematics: Linear Algebra and Group Project

In this module you will develop an understanding of vectors and matrices within the context of vector spaces, with a focus on deriving and using various decompositions of matrices, including eigenvalue decompositions and the so-called normal forms. You will learn how these abstract notions can be used to solve problems encountered in other fields of science and mathematics, such as optimisation theory. Working in small groups, you will put together different aspects of mathematics in a project on a topic of your choosing, disseminating your findings in writing and giving an oral presentation to your peers.

Mathematics: Rings and Factorisation

In this module you will develop an understanding of ring theory and how this area of algebra can be used to address the problem of factorising integers into primes. You will look at how these ideas can be extended to develop notions of 'prime factorisation' for other mathematical objects, such as polynomials. You will investigate the structure of explicit rings and learn how to recognise and construct ring homomorphisms and quotients. You will examine the Gaussian integers as an example of a Euclidean ring, Kronecker's theorem on field extensions, and the Chinese Remainder Theorem.

Mathematics: Groups and Group Actions

In this module you will develop an understanding of the algebraic structures known as groups. You will look at how groups represent symmetries in the world around us, examining examples that arise from the theory of matrices and permutations. You will see how groups are ubiquitous and used in many different fields of human study, including mathematics, physics, the study of crystals and atoms, public key cryptography, and music theory. You also will also consider how various counting problems concerning discrete patterns can be solved by means of group actions.

Mathematics: Further Linear Alegbra and Modules

In this module you will develop an understanding of the language and concepts of linear algebra that are used within Mathematics. You will look at topics in linear algebra and the theory of modules, which can be seen as generalisations of vector spaces. You will learn how to use alternative matrix representations, such as the Jordan canonical or the rational canonical form, and see why they are important in mathematics.

Mathematics: Complex Variable

In this module you will develop an understanding of the basic complex variable theory. You will look at the definitions of continuity and differentiability of a complex valued function at a point, and how Cauchy-Riemann equations can be applied. You will examine how to use a power series to define the complex expontential function, and how to obtain Taylor series of rational and other functions of standard type, determining zeros and poles of given functions. You will also consider how to use Cauchy's Residue Theorem to evaulate real integrals.

Mathematics: Real Analysis

In this module you will develop an understanding of the convergence of series. You will look at the Weierstrass definition of a limit and use standard tests to investigate the convergence of commonly occuring series. You will consider the power series of standard functions, and analyse the Intermediate Value and Mean Value Theorems. You will also examine the properties of the Riemann integral.

Year 3

Optional modules in Economics include:

Industrial Economics 1

In this module you will develop an understanding of the methods and models applied by economists in the analysis of firms and industries. You will learn how to manipulate these models and analytically solve problems relating to industrial economics. You will consider the applications of the models to important policy areas, exploring topics such as collusion, mergers, product differentiation and asymmetric information. You will also also examine the limitations of the theory.

Industrial Economics 2

In this module you will devlop an understanding of advanced topics in industrial organisation, with a special focus on the role that information plays in markets. You will explore topics such as collusion, mergers, product differentiation, and asymmetric information, and become familiar with a broad range of methods and models applied by economists in the analysis of firms and industries.

Financial Economics 1

In this module you will develop an understanding of the financial market, institutions, participants and traded assets that constitute a modern financial system. You will look at the theories of risk-factor pricing, such as the Capital Asset Pricing Model (CAPM) and the Arbitrage Pricing Theory (APT). You will consider the theory of, and empirical evidence on, efficient, markets and examine the process of price formation. You will also analyse the derivation and construction of efficient portfolios.

Financial Economics 2

In this module you will develop an understanding of the wide range of fixed income securities and derivatives available to investors in the financial markets. You will look at the basic institutional features of derivatives markets, as well as the pricing of bonds and of derivative instruments and using them for hedging purposes. You will consider investment and trading strategies that use bonds and derivatives, and evaluate the use of bonds in immunising portfolios based on the bond's duration. You will also explore the features and uses of the most popular types of derivatives available today, including options, futures, forwards, and swaps.

Econometrics 1

In this module you will develop an understanding of the theoretical properties of different econometric estimation and testing procedures under various modelling assumptions. You will learn to formulate, estimate, test and interpret suitable models for the empirical study of economic phenomena. You will consider how to apply regression techniques and evaluate the appropriateness of each econometric estimation method under different data limitations.

Econometrics 2

In this module you will develop an understanding of the theoretical properties of different econometric estimation and testing procedures under various modelling assumptions. You will look at regression techniquies and learn how to apply relevant econometric and statistical methods to your own research. You will also evaluate the appropriateness of each of the economic estimation methods and the impact of consider data limirations.

Understanding Financial Crises

In this module you will develop an understanding of the fragility of the financial system and its relevance to the current financial crisis. You will learn the economic meaning of the terms liquidity and solvency in the context of financial intermediaries. You will look at the models of equilibrium bank runs and consider the implications of imposing capital structure controls and liquidity control on financial intermediaries. You will also critically evaluate the links between financial crises and the macroeconomy.

Environmental Economics

In this module you will develop an understanding of how economic methods can be applied to environmental issues facing society. You will consider the difficulties arising in using economic analysis in environmental policy design and learn how to solve and manipulate a variety of diagrammatic and algebraic models in environmental economics. You will evaluate a number of real world environmental policy problems and see how economic analysis has been applied in their solution.

Experimental Economics

In this module you will develop an understanding of the use of experiments to test economic theories. You will look at how individuals make decisions in markets, how individuals decide to spend money today or save it for future spendng, the assumption of self-regarding preferences commonly made in standard economic models, and the ability to act rationally in a strategic environments. You will consider the issues raised by experimental design and critically evaluate the advantages and disadvantages of experimental methods.

Monetary Economics

In this module you will develop an understanding of the role of money in the economy. You will look at models where inflation show persistence, the theory of monetary policy, monetary policy operating procedures and the central banking machanisms. You will consider why inflation is persistent in the data and how the political forces affecting monetary policy making may affect inflation.

Topics in Game Theory
Advanced Economic Theory
Financial Econometrics
Labour Economics
Economic Philosophy
Topics in Public Economics
International Economic History

In this module you will develop your understanding of important topics from economic history, covering periods of economic growth and wellbeing, agricultural and urban development, globalisation and migration, banking and monetary systems, and the Great Depression and recovery.

Topics in Developmental Economics
Advanced Topics in Game Theory
Economics of Inequality

Optional modules in Mathematics include:

Mathematics: Number Theory

In this module you will develop an understanding of how prime numbers are the building blocks of the integers 0, ±1, ±2, … You will look at how simple equations using integers can be solved, and examine whether a number like 2017 should be written as a sum of two integer squares. You will also see how Number Theory can be used in other areas such as Cryptography, Computer Science and Field Theory.

Mathematics: Computational Number Theory

In this module you will develop an understanding of a range methods used for testing and proving primality, and for the factorisation of composite integers. You will look at the theory of binary quadratic forms, elliptic curves, and quadratic number fields, considering the principles behind state-of-the art factorisation methods. You will also look at how to analyse the complexity of fundamental number-theoretic algorithms.

Mathematics: Complexity Theory

In this module you will develop an understanding the different classes of computational complexity. You will look at computational hardness, learning how to deduce cryptographic properties of related algorithms and protocols. You will examine the concept of a Turing machine, and consider the millennium problems, including P vs NP, with a $1,000,000 prize on offer from the Clay Mathematics Institute if a correct solution can be found.

Mathematics: Priniciples of Algorithm Design

In this module you will develop an understanding of efficient algorithm design and its importance for handling large inputs. You will look at how computers have changed the world in the last few decades, and examine the mathematical concepts that have driven these changes. You will consider the theory of algorithm design, including dynamic programming, handling recurrences, worst-case analysis, and basic data structures such as arrays, stacks, balanced search trees, and hashing.

Mathematics: Quantum Theory 2

In this module you will develop an understanding of how the Rayleigh-Ritz variational principle and perturbation theory can be used to obtain approximate solutions of the Schrödinger equation. You will look at the mathematical basis of the Period Table of Elements, considering spin and the Pauli exclusion principle. You will also examine the quantum theory of the interaction of electromagnetic radiation with matter.

Mathematics: Non-Linear Dynamical Systems - Routes to Chaos

In this module, you will develop an understanding of non-linear dynamical systems. You will investigate whether the behaviour of a non-linear system can be predicted from the corresponding linear system, and see how dynamical systems can be used to analyse mechanisms such as the spread of disease, the stability of the universe, and the evolution of economic systems. You will gain an insight into the 'secrets' of the non-linear world and the appearance of chaos, examining the significant developments achieved in this field during the final quarter of the 20th Century.

Mathematics: Inference

In this module you will develop an understanding of the main priciples and methods of statstics, in particular the theory of parametric estimation and hypotheses testing.You will learn how to formulate statistical problems in mathematical terms, looking at concepts such as Bayes estimators, the Neyman-Pearson framework, likelihood ratio tests, and decision theory.

Mathematics: Time Series Analysis

In this module you will develop an understanding of statistics by looking at the theory and methods used in time series analysis and forecasting. You will look at descriptive methods and theoretical techniques to analyse time series data from fields such as finance, economics, medicine, meteorology, and agriculture. You will learn to use the statistical computing package Minitab as a data analysis, calculation and graphical aid.

Mathematics: Applied Probability

In this module you will develop an understanding of the the probabilistic methods used to model systems with uncertain behaviour. You will look at the structure and concepts of discrete and continuous time Markov chains with countable stable space, and consider the methods of conditional expectation. You will learn how to generate functions, and construct a probability model for a variety of problems.

Mathematics: Channels

In this module you will develop an understanding of the mathematics of communication, focusing on digital communication as used across the internet and by mobile telephones. You looking at compression, considering how small a file, such as a photo or video, can be made, and therefore how the use of data can be minimised. You will examine error correction, seeing how communications may be correctly received even if something goes wrong during the transmission, such as intermittent wifi signal. You will also analyse the noiseless coding theorem, defining and using the concept of channel capacity.

Mathematics: Quantum Information and Coding

In this module you will develop an understanding of how the behaviour of quantum systems can be harnessed to perform information processing tasks that are otherwise difficult, or impossible, to carry out. You will look at basic phenomena such as quantum entanglement and the no-cloning principle, seeing how these can be used to perform, for example, quantum key distribution. You will also examine a number of basic quantum computing algorithms, observing how they outperform their classical counterparts when run on a quantum computer.

Mathematics: Maths of Financial Markets

In this module you will develop an understanding of how financial markets operate, with a focus on the ideas of risk and return and how they can be measured. You will look at the random behaviour of the stock market, Markowitz portfolio optimisation theory, the Capital Asset Pricing Model, the Binomial model, and the Black-Scholes formula for the pricing of options.

Mathematics: Advanced Financial Mathematics

In this module you will develop an understanding of the role of mathematics and statistics in securities markets. You will investigate the validity of various linear and non-linear time series occurring in finance, and apply stochastic calculus, including partial differential equations, for interest rate and credit analysis. You will also consider how spot rates and prices for Asian and barrier exotic options are modelled.

Mathematics: Combinatorics

In this module you will develop an understanding of some of the standard techniques and concepts of combinatorics, including methods of counting, generating functions, probabilistic methods, permutations, and Ramsey theory. You will see how algebra and probability can be used to count abstract mathematical objects, and how to calculate sets by includion an exclusion. You will examine the applications of number theory and consider the use of simple probabilistic tools for solving combinatorial problems.

Mathematics: Error Correcting Codes

In this module you will develop an understanding of how error correcting codes are used to store and transmit information in technologies such as DVDs, telecommunication networks and digital television. You will look at the methods of elementary enumeration, linear algebra and finite fields, and consider the main coding theory problem. You will see how error correcting codes can be used to reconstruct the original information even if it has been altered or degraded.

Mathematics: Cipher Systems

In this module you will develop an understanding of secure communication and how cryptography is used to achieve this. You will look at some of the historical cipher systems, considering what security means and the kinds of attacks an adversary might launch. You will examine the structure of stream ciphers and block ciphers, and the concept of public key cryptography, including details of the RSA and ElGamal cryptosystems. You will see how these techniques are used to achieve privacy and authentication, and assess the problems of key management and distribution.

Mathematics: Public Key Cryptography

In this module you will develop an understanding of public key cryptography and the mathematical ideas that underpin it, including discrete logarithms, lattices and elliptic curves. You will look at several important public key cyptosystems, including RSA, Rabin, ElGamal encryption and Schnorr signatures. You will consider notions of security and attack models relevant for modern theoretical cryptography, such as indistinguishability and adaptive chosen ciphertext attack.

Mathematics: Application of Field Theory

"In this module you will develop an understanding of Field Theory. You will learn how to express equations such as X2017=1 in a formal algebraic setting, how to classify finite fields, and how to determine the number of irreducible polynomials over a finitie field. You will also consider some the applications of fields, including ruler and compass constructions and why it is impossible to generically trisect an angle using them."

Mathematics: Groups and Group Actions

In this module you will develop an understanding of the algebraic structures known as groups. You will look at how groups represent symmetries in the world around us, examining examples that arise from the theory of matrices and permutations. You will see how groups are ubiquitous and used in many different fields of human study, including mathematics, physics, the study of crystals and atoms, public key cryptography, and music theory. You also will also consider how various counting problems concerning discrete patterns can be solved by means of group actions.

Mathematics: Further Linear Alegbra and Modulus

In this module you will develop an understanding of the language and concepts of linear algebra that are used within Mathematics. You will look at topics in linear algebra and the theory of modules, which can be seen as generalisations of vector spaces. You will learn how to use alternative matrix representations, such as the Jordan canonical or the rational canonical form, and see why they are important in mathematics.

Mathematics: Topology

In this module you will develop an understanding of geometric objects and their properties. You will look at objects that are preserved under continuous deformation, such as through stretching or twisting, and will examine knots and surfaces. You will see how colouring a knot can be used to determine whether or not it can be transformed into the unknot without any threading. You will also consider why topologists do not distinguish between a cup and a donut.

Teaching is mostly by means of lectures and seminars, the latter providing a forum for students to work through problem sets and applications in a smaller and more interactive setting. Outside of scheduled teaching sessions, students work independently, or collaboratively, researching, reading and preparing for seminars. 

Assessment is usually carried out by end of year examinations as well as class tests and assignments. Final year students can choose to complete an extended essay, which offers students the chance to conduct an original piece of research.

Study time

Proportions of study time will vary depending on modules taken, but typically:

Year 1

You will spend 26% of your study time in scheduled learning and teaching activities, and 74% in guided independent study.

Year 2

You will spend 24% of your study time in scheduled learning and teaching activities, and 76% in guided independent study.

Year 3

You will spend 21% of your study time in scheduled learning and teaching activities, and 79% in guided independent study.

Assessment

Proportions of assessment types will vary depending on modules taken, but typically:

Year 1

Written exams account for 79% of the total assessment for this year of study, 4% will be assessed through practical exams, and 17% will be assessed through coursework.

Year 2

Written exams account for 88% of the total assessment for this year of study, and 12% will be assessed through coursework.

Year 3

Written exams account for 90% of the total assessment for this year of study, and 10% will be assessed through coursework.

Typical offers

Typical offers
A-levels

AAB-ABB
How we assess your application: predicted grades lower than our typical offers are considered. Read more about what we look for here

  • Where an applicant is taking the EPQ alongside A-levels, the EPQ will be taken into consideration and result in lower A-level grades being required.

  • Socio-economic factors which may have impacted an applicant's education will be taken into consideration and alternative offers may be made to these applicants.

Required/preferred subjects

Grade A in A-level Maths

At least five GCSEs at grade A*-C or 9 - 4 including English and Mathematics.

Other UK Qualifications
International Baccalaureate

6,5,5 at Higher Level subjects including 6 in HL Maths with a minimum of 32 points overall.

BTEC National Extended Diploma

Distinction* Distinction Distinction in a relevant subject plus grade A in A-Level Maths

Distinction Distinction in a relevant subject plus grade A in A-level Maths

BTEC National Extended Certificate

Distinction plus A-Level grades AB including grade A in Maths

Welsh Baccalaureate

Requirements are as for A-levels where one non-subject-specified A-level can be replaced by the same grade in the Welsh Baccalaureate - Advanced Skills Challenge Certificate

Scottish Advanced Highers

 

Scottish Highers

AAABB plus grade A in Advanced Higher Level Maths

Irish Leaving Certificate

H2,H2,H3,H3,H3 including H2 in Maths

Access to Higher Education Diploma

Pass with at least 24 level 3 credits at Distinction, 15 of which must be in Maths units,  and the remaining level 3 credits at Merit, plus A-level Maths grade A. Please note that the Access to Higher Education Diploma will only be acceptable if the applicant has had a considerable break from education.

Other UK qualifications

Please select your UK qualification from the drop-down list below



Please select a qualification

Please select a qualification



International and EU entry requirements

Please select your country from the drop-down list below

English language
requirements

IELTS 6.5 overall with 6.0 in both Reading and Writing and no lower than 5.5 in every other subscore. For equivalencies please see here.

For more information about entry requirements for your country please visit our International pages. For international students who do not meet the direct entry requirements, we offer an International Foundation Year, run by Study Group at the Royal Holloway International Study Centre. Upon successful completion, students can progress on to selected undergraduate degree programmes at Royal Holloway, University of London.

A Economics and Mathematic degree at Royal Holloway will provides you with an excellent background for a career in business or finance, focusing on developing your quantitative and analytical skills.  

We will help students to recognise their own strengths, skills and abilities so that they can make strong applications for their chosen job or further study.  We also provide support through a dedicated careers programme which give you access to employability workshops, events and guest speakers.

  • Graduates are highly employable; 85% of economics graduates and 90% of mathematics graduates achieved full time employment or further study achieved within six months of graduation (Unistats 2015).
  • In recent years, graduates have launched careers in with a wide-range of organisations, including Royal Capital Management, Barclays Bank, and government departments such as the Department of Health. 
  • Graduates have entered roles as investment advisor, financial analyst, finance broker, government economist, chartered accountant, statistician, researcher and teacher.
  • Certain exemptions may be given by the Institute of Actuaries and other professional bodies to students who have taken appropriate course units as part of their Mathematics degree at Royal Holloway.

Home and EU students tuition fee per year*: £9,250

International students tuition fee per year**: £16,500

Other essential costs***: There are no single associated costs greater than £50 per item on this course

How do I pay for it? Find out more about funding options, including loans, grants, scholarships and bursaries.

*The tuition fee for UK and EU undergraduates is controlled by Government regulations, and for students starting a degree in the academic year 2018/19 will be £9,250 for that year, and is shown for reference purposes only. The tuition fee for UK and EU undergraduates has not yet been confirmed for students starting a degree in the academic year 2019/20.

**Fees for international students starting a degree at Royal Holloway in the academic year 2019/20 have not yet been set, and those for 2018/19 are shown for reference purposes only. Fees for international students may increase year-on-year in line with the rate of inflation. The policy at Royal Holloway is that any increases in fees will not exceed 5% for continuing students. For further information see fees and funding and our terms and conditions.

***These estimated costs relate to studying this particular degree programme at Royal Holloway. Costs, such as accommodation, food, books and other learning materials and printing etc., have not been included.

Back to course search results

 

Related degrees

 
 
 

Comment on this page

Did you find the information you were looking for? Is there a broken link or content that needs updating? Let us know so we can improve the page.

Note: If you need further information or have a question that cannot be satisfied by this page, please call our switchboard on +44 (0)1784 434455.

This window will close when you submit your comment.

Add Your Feedback
Close