We use cookies on this site. By browsing our site you agree to our use of cookies. Close this message Find out more

Home > Courses > Undergraduate > Medical Biochemistry
More in this section Biological Sciences

Medical Biochemistry BSc

UCAS code C741
Year of entry 2018
Course Length
3 years full time
Department Biological Sciences »

All living things function and operate as a result of chemical processes. Medical Biochemistry at Royal Holloway, University of London helps to provide an understanding of these essential chemical processes, exploring the molecular basis of disease.

Pursue your passion for Medical Biochemistry at Royal Holloway and work towards joining the ranks of scientists striving to develop new methods of disease prevention and treatment.

You’ll study in our state-of-the-art School of Biological Sciences, where a recent £16 million investment has helped to secure cutting-edge technology including mass spectrometry, bioinformatics and gene and protein sequencing equipment.

The flexible degree programme lets you tailor your learning in years 2 and 3, selecting from a variety of optional courses ranging from Microbiology to Pharmacology and Toxicology and Biology of Parasitic Diseases to Molecular and Medical Microbiology.

Learn how to make clinical diagnoses of diseases in a course taught by health professionals from local hospitals, and become a part of our renowned research culture in your year 3 lab-based independent research project. The School of Biological Sciences was ranked 25th in the UK for influential research output by the Research Excellence Framework (REF) 2014, and many of our former students have contributed to published scientific papers.

The skills and experience you’ll gain as a Medical Biochemistry student will make you a highly attractive candidate to employers in a variety of sectors. You’ll gain laboratory experience across all three years and receive a grounding in physiology, genetics and microbiology as well as biochemistry for medicine. Our alumni have gone on to careers in fields including forensic medicine, biotechnology and medical research. 

  • Learn from specialist medical professionals based in local hospitals.
  • Gain invaluable transferable skills to take into the workplace, including lab experience, data handling and communication skills.
  • Take part in world-class research led by renowned academics, with 76% of our Biological Sciences research ranked world-leading and internationally excellent.
  • Join a close-knit and supportive learning community with a high staff-to- student ratio.
  • Graduate with a Royal Society of Biology accredited degree.

Core modules

Year 1

Principles of Molecular Bioscience

In this module you will develop an understanding of the basics of biological chemistry and how this can explain many molecular processes in the life sciences. You will look at chemical bonding and interactions in the major classes of biomolecules, the role of energy in chemical and biochemical changes, chemical equilibrium and reaction rates, and acid-base phenomena in aqueous solutions, particularly with respect to amino acids and peptides. You will also examine the relationship between structure and function in biology, notably in myoglobin and hemoglobin, and the principles of biological reaction mechanisms.

Living Systems - Animal and Plant Physiology

In this module you will develop an understanding of the fundamental physiological processes required for communication, obtaining and distributing nutrients, and maintaining the internal environment within multicellular organisms. You will look at how changes in internal and external environments are assessed by animals and plants, and examine the ways in which plants and animals obtain oxygen, carbon dioxide, water and energy, and rid themselves of waste materials. You will also consider the key properties of organ systems which support mobility.

Cell Biology and Genetics

In this module you will develop an understanding of the basic features of microbes and the diversity of microorganisms. You will look at the subcellular features of prokaryotic and eukaryotic cells, examining the key functions of these structures and organelles. You will consider celluar genetics with respect to mitosis, meiosis, inheritance and recombination, and the fundamentals of genome organisation, transcription and translation. You will also learn practical techniques in microscopy, including slide prepration for the observation of chromosomes, and fixation techniques for the analysis of cell ultrastructure.

Biochemistry - The Molecular Basis of Life

In this module you will develop an understanding of the relationships between the structure and function of the various types of biomolecules. You will look at enzyme catalysis and the kinetics of enzyme-catalysed reactions, and how anabolic and catabolic processes are used by oragnisms to store and extract energy from chemical sources. You will also consider the underlying chemistry of a range analytical methods and see how these are used in research and diagnostics, performing these methods in laboratory practicals.

Year 2

Bioenergetics, Biosynthesis and Metabolic Regulations

In this module you will develop an understanding of the major pathways for electron transfer and energy conversion in living systems. You will look at how energy is utilised in biosynthesis, and the role of enzymes, coenzymes and metabolic intermediates. You will examine the priniciple of flux control and metabolic regulation and the mechanisms that balance the activity of key pathways to physiological demands. You will also consider the main features of human energy metabolism and their relationship to obesity and diabetes, and analyse the importance of protein glycosylation and how protein glycans are biosynthesised.

Protein Structure and Function

In this module you will develop an understanding of protein structure, protein folding in vivo, and the principles of protein engineering and protein-protein interaction. You will look at methods for the separation, purification, detection, and structural analysis of proteins, gaining practical experience in using techniques such as SDS-PAGE and Western blotting. You will also examine mechanisms of enzyme catalysis and regulation.

Molecular Biology

In this module you will develop an understanding of the chemical structure of DNA and RNA, and how genes are organised and expressed. You will look at gene characterisation using recombinant DNA technology, and will consider DNA as a template for RNA synthesis. You will also become familiar with molecular biology techiques that are widely used in the life sciences, including the preparation and handling of purified DNA, restriction enzyme digestions, and polymerase chain reaction.

Molecular and Cellular Immunology

In this module you will develop an understanding of the mammalian immune systems at cellular and molecular levels, and how this is determined by antibody structure and function, the complement system, and the impact of immunoglobulin genetics. You will look at the role of T cells as effectors and regulators of immune responses, allergic reactions, transplant rejection, and the HIV virus and the pathogenesis of AIDS on the immune system. You will examine antipody antigen reaction techniques used in immunology, and consider the isolation and purification of lymphocytes, their morphology and abundance.

Neuronal and Cellular Signalling

In this module you will develop an understanding of the structure of the nervous system, including the main types of cells and the transmission of signals within neuronal networks. You will look at the process of synpatic transmittion, including both electrical and chemical synapses. You will examine the different types of neurotransmitters and receptors and the mechanism of intracellular signalling, considering the role of second messenager signalling pathways. You will also enhance your practical skills, such as isolating and characterising synaptosomes and using these for the study of transmitter metabolism.

Physical Biochemistry for Life Scientists

In this module you will develop an understanding of the behaviour of macromolecules in solution, looking at the key analytical methods used for their study. You will become familiar with a range of spectrosopic techniques, including fluorescence, phosphorescence and circular dichroism. You will examine the phenomena of surface plasmon resonance measurements, interferometry, and biocalorimetry, and look at the principles of scanning force microscopy (SFM) and atomic force microscopy (AFM). You will also consider the importance of the emerging field of nanobiotechnology.

Year 3

Human Embryology and Endocrinology

In this module you will develop an understanding of human embryos and the development and function of particular endocrine systems. You will look at embryonic development, including gastrulation and specification of the axes, and the initial steps in the formation and patterning of the brain and spinal cord. You will examine craniofacial development, pharyngeal gland formation and sex determination, analysing the cellular and molecular processes involved in detail. You will also consider some of the birth defects that can arise, the genetic and environmental insults that cause them, and investigations which inform their prevention.

Cell and Molecular Neuroscience

In this module you will develop an understanding of the basic principles of brain development and the molecular mechanisms which regulate this, including the synthesis, storage and release of neurotransmitters. You will look at the molecular basis of learning and memory, considering brain disorders such as Alzheimer’s disease, epilepsy and bipolar disorder. You will assess the problem of brain damage in preterm babies and infants, and the methods available to help provide neuroprotection, with insights from a clinical practitioner.

Molecular Basis of Inherited Disease

In this module you will develop an understanding of the theory, technology, and clinical practice of human molecular genetics. You will look at a range of genetic disorders and inborn errors of metabolism such as muscular dystrophies, cystic fibrosis, haemophilia, lysosomal storage disorders, haemoglobinopathies, mitochondrial respiratory chain disorders, neurotransmitter synthesis disorders, lipoprotein diseases and primary immunodeficiencies. You will examine the concepts and significance of human inherited disease gene mapping and consider the importance of the human genome project.

Clinical Diagnosis of Disease

In this module you will develop an understanding of how physiology, biochemistry and biochemical methodologies can be applied to the investigation of disease and monitoring of treatment. You will look at the chemical pathology of a range of physiological systems, including kidney, liver, heart, thyroid and bone, and clinical biochemical aspects of cancer diagnosis, infertility and epilepsy. You will examine the rationale behind the analyses used in the biochemical investigation of disease, and consider the clinical aspects of disorders affecting the various organs and systems.

Individual Research Project

You will carry out an individual laboratory or theoretical investigation, supervised by an appropriate member of staff, who will provide guidance throughout. You will apply the knowledge and skills learned throughout your studies, and learn to organise data in a logical, presentable and persuasive way. You will produce a report, around 8,000 words in length, and will deliver an oral presentation with a summary of your findings.

Optional modules

In addition to these mandatory course units there are a number of optional course units available during your degree studies. The following is a selection of optional course units that are likely to be available. Please note that although the College will keep changes to a minimum, new units may be offered or existing units may be withdrawn, for example, in response to a change in staff. Applicants will be informed if any significant changes need to be made.

Year 1

Only core modules are taken

Year 2

Microbiology

In this module you will develop an understanding of some of the key concepts in microbiology, including the study of bacteria, viruses, and eukaryotic microbes. You will look at how microbes are distinguished and classified, and discuss bacterial growth and differentiation. You will examine the importance of microorganisms in health and disease, including human welfare issues such as opportunistic infections and the role of microorganisms in cancer.

Cell Biology

In this module you will develop an understanding of the key methologies used in cell biology, becoming familar with modern microscopy techniques and live cell imaging studies. You will look at the basic mechanisms that regulate the cell cycle and the regulatory mechanisms for DNA synthesis and mitosis. You will examine mitochondria and chlorpolast organelle functions, and the principles of polar bodies and asymmetric cell division. You will assess the basic mechanisms underlying cell shape and mobility, and consider the evolutionary constrains of cellular functions.

Developmental Biology

In this module you will develop an understanding of the processes that lead from a fertilised egg into complex tissues and organisms with well-defined body plans. You will look at the basic cellular and genetic mechanisms that regulate development, and the evolutionary outcomes of developmental changes. You will examine model organisms in which both embryological and genetic approaches have been developed, and will explore axis establishment, segmentation, cellular differentiation, organ development, and the widely-shared signalling pathways that underpin them.

Pharmacology and Toxicology

In this module you will develop an understanding of drug-receptor interactions and the methods used to characterise drug action. You will look at the factors that influence drug action and drug toxicity within the body, examining the concepts of drug absorption, distribution, metabolism and excretion. You will consider the pharmacology of a number of major drug classes, including antihypertensives, antidepressants, analgesics, general and local anaesthetics and drugs affecting the automonic system.

Year 3

Biology of Parasitic Diseases

In this module you will develop an understanding of the principles of parasitism and the protective mechanisms used by immuno-competent hosts to limit the spread of infection. You will look at the biological strategies used by a range of unicellular and multicellular organisms to colonise host causing disease in human and non-human hosts. You will consider studies on the pathology and the cellular immunity elicited by various parasites, and the immune evasion strategies used by widely distributed human parasites to protect themselves from immune attack. You will also address the principles and prospects of anti-parasitic vaccination in the 21stCentury.

Molecular and Medical Microbiology

In this module you will develop an understanding of medical microbiology with particular reference to bacteria and pathogenic eukaryotes. You will look at pathogen mechanisms for infection, the host immune response to infection, vaccine development, gastrointestinal health and disease, resistance to antibiotics, anti-parasite chemotherapy and the genetic and biochemical validation of parasite drug targets in the kinetoplastidae. You will examine the role of probiotics in health and disease, and consider a range of microbiological and molecular diagnostics techniques.

Applications of Advanced Molecular Biology Methods

In this module you will develop an understanding of the transformation technologies used in the study of gene expression, gene therapy and biotechnological applications of genetically modified organisms. You will consider how molecular biology research is employed in a range of systems, including animal and plant models, as well as the simple social amoeba, Dictyostelium. You will also analyse the use of molecular genetics in the study of circadian rhythms.

Cell and Molecular Biology of Cancer

In this module you will develop an understanding of advanced concepts and recent advances in fundamentally important areas of cell biology revelant to cancer, including developments in microscopy, imaging and molecular genetic techniques. You will look at current concepts in molecular cell biology, such as cell-cell adhesion and signalling, stem cells in development and in diseases, and cancer and the role of the cytoskeleton. You will examine topics in cancer biology including oncogenes, tumour suppressor genes and caretaker genes, and the signalling and regulatory pathways these are involved in. You will also examine the diagnosis and rational of cancer therapies.

Special Study - Dissertation

You will carry out a literature research project on a biological or biochemical topic of your choice, producing a written report around 7,500 words in length. You will critically evaluate recent scientific literature on your chosen topic, highlighting how data has been used to generate and test hypotheses.

Each year you will take modules worth a total of 120 credits, with most individual modules worth 15 credits. In your final year, your Individual Research Project is worth 30 credits.

The first year is formative, while outcomes of your second and third year contribute one third and two-thirds of your final degree classification respectively.

You will attend a mixture of lectures, seminars and small-group tutorials, with class sizes that range from 6 to 180 students. Practical classes are a major part of all first and second year modules, and include experiments that are integral to the subject, helping to familarise you with the material and augment your understanding of key topics. These are either laboratory-based or field-based with laboratory follow-up. In your third year, you will complete an individual research project supervised by one of our academics, and you may have the opportunity to contribute towards a published scientific paper. The individual research project is assessed on the basis of a written report, supervisor assessment, and an oral presentation.

During your first and second years, you will complete essays and reports, and sit written examinations. In your third year, assignments include a range of activities, such as preparation of posters, oral presentations, creation of leaflets and podcasts, coursework essays, mock research grant applications and scientific news-and-views articles, as well as analysis of data from online repositories in mini-research projects.

Study time

Proportions of study time will vary depending on modules taken, but typically:

Year 1

You will spend 32% of your study time in scheduled learning and teaching activities, and 68% in guided independent study.

Year 2

You will spend 25% of your study time in scheduled learning and teaching activities, and 75% in guided independent study.

Year 3

You will spend 27% of your study time in scheduled learning and teaching activities, and 73% in guided independent study.

Assessment

Proportions of assessment types will vary depending on modules taken, but typically:

Year 1

Written exams account for 61% of the total assessment for this year of study, 5% will be assessed through practical exams, and 34% will be assessed through coursework.

Year 2

Written exams account for 71% of the total assessment for this year of study, 4% will be assessed through practical exams, and 25% will be assessed through coursework.

Year 3

Written exams account for 59% of the total assessment for this year of study, 12% will be assessed through practical exams, and 29% will be assessed through coursework.

Typical offers

Typical offers
A-levels

ABB-BBB
How we assess your application:  predicted grades lower than our typical offers are considered.  Read more about what we look for here.

  • Where an Applicant is taking the EPQ alongside A-levels, the EPQ will be taken into consideration and result in lower A-level grades being required. 

  • Socio-economics factors which may have impacted an applicant's education will be taken into consideration and alternative offers may be made to these applicants.

Required/preferred subjects

Required subjects: Biology and Chemistry, plus a Pass in the practical element of both subjects.

At least five GCSEs at grade A*-C or 9-4 including English and Mathematics.

Other UK Qualifications
International Baccalaureate

5,5,5 at Higher Level including Higher Level Biology and Higher Level Chemistry, with a minimum of 32 points overall.

BTEC Extended Diploma

Not normally accepted.

BTEC National Extended Diploma

Distinction, Distinction in Applied Science and grade B in A-level Chemistry or A-level Biology. Alternatively, Distinction, Distinction in Health and Social Care and grades BB in A-level Chemistry and A-level Biology. A Pass is required in the practical element of all Science A-levels taken.

BTEC National Extended Certificate

Distinction plus grades BB in A-level Chemistry and A-level Biology. A Pass is required in the practical element of all Science A-levels taken.

Welsh Baccalaureate

Requirements are as for A-levels where one non-subject-specified A-level can be replaced by the same grade in the Welsh Baccalaureate - Advanced Skills Challenge Certificate.

Scottish Advanced Highers

ABB-BBB including Biology and Chemistry

Scottish Highers

AABBB including Biology and Chemistry

Irish Leaving Certificate

H2, H2, H3, H3, H3 including Biology and Chemistry.

Access to Higher Education Diploma

Pass with at least 24 level 3 credits at Distinction, including all Biology and Chemistry units at Distinction, and the remaining level 3 credits at Merit.

Please note that the Access to Higher Education Diploma will only be acceptable if the applicant has had a considerable break from education.

Other UK qualifications

Please select your UK qualification from the drop-down list below



Please select a qualification

Please select a qualification



International and EU entry requirements

Please select your country from the drop-down list below

English language
requirements

IELTS 6.5 overall and minimum of 5.5 in each subscore for equivalencies please see here.

For more information about entry requirements for your country please visit our International pages. For international students who do not meet the direct entry requirements, we offer an International Foundation Year, run by Study Group at the Royal Holloway International Study Centre. Upon successful completion, students can progress on to selected undergraduate degree programmes at Royal Holloway, University of London.

Medical Biochemistry at Royal Holloway, University of London is geared towards making you an attractive candidate to potential employers in a wide range of sectors. You’ll graduate with extensive lab-based experience and a range of specialist knowledge and transferrable skills, undertaking an independent research project in year 3.

Our alumni go on to pursue careers in fields including medicine, forensic science, pharmaceuticals and biotechnology. Our close-knit graduate network means that alumni regularly visit to share their knowledge and experience with current students, helping to better prepare you for a fulfilling career in your chosen field.

  • 90% of Life Sciences graduates in work or further education within six months of graduating.
  • A close-knit graduate network to draw on, with alumni often visiting Royal Holloway to share their experiences.
  • Summer placements offered to help students gain invaluable work experience.

Home and EU students tuition fee per year*: £9,250

International students tuition fee per year**: £18,900

Other essential costs***: £235

How do I pay for it?  Find out more about funding options, including loans, grants, scholarships and bursaries.

*Tuition fees for UK and EU nationals starting a degree in the academic year 2017/18 will be £9,250 for that year, and is shown for reference purposes only. The tuition fee for UK and EU undergraduates starting their degrees in 2018 is controlled by Government regulations, and details are not yet known. The UK Government has also announced that EU students starting an undergraduate degree in 2018/19 will pay the same level of fee as a UK student for the duration of their degree.

**Fees for international students may increase year-on-year in line with the rate of inflation. Royal Holloway's policy is that any increases in fees will not exceed 5% for continuing students. For further information see fees and funding and our  terms & conditions.

***These estimated costs relate to studying this particular degree programme at Royal Holloway. Costs, such as accommodation, food, books and other learning materials and printing etc., have not been included.

Back to course search results

 
 
 

Comment on this page

Did you find the information you were looking for? Is there a broken link or content that needs updating? Let us know so we can improve the page.

Note: If you need further information or have a question that cannot be satisfied by this page, please call our switchboard on +44 (0)1784 434455.

This window will close when you submit your comment.

Add Your Feedback
Close