Skip to main content

Quaternary Science

Thank you for considering an application

Please follow the instructions on Royal Holloway Direct and be sure to provide any documents required to support your application.

If you are a current undergraduate Royal Holloway student we would ask that when creating a postgraduate application you do so using your current Royal Holloway email address.

If you haven’t applied to Royal Holloway before please click here to apply:

Start your application

If you have already applied to Royal Holloway please click here to login to your application portal:

Admissions portal

Quaternary Science


The closing date for applications to start this course in September 2023 has now passed. Find out more

Key information

Duration: 1 year full time or 2 years part time

Institution code: R72

Campus: Egham

UK fees*: £10,100

International/EU fees**: £20,700

The course

Quaternary Science (MSc)

Study Quaternary Science at Royal Holloway, University of London and you’ll receive comprehensive postgraduate training on the time-dependent processes that affect environmental change, helping you to understand and confront some of the most profound issues of our time.

You’ll acquire an advanced knowledge and understanding of key issues within Quaternary Science, including high-resolution palaeoenvironmental records, high-precision dating and multi-proxy approaches to the investigation of past environmental changes.

The Department of Geography is one of the leading centres for international geographical research in the UK. In the 2021 Research Excellence Framework our research environment was recognized as overwhelmingly world class, and Times Higher Education places Geography joint fifth in the country.

The staff and facilities of the Centre for Quaternary Research (CQR) at Royal Holloway provide a wide range of opportunities, including participation in internationally significant research programmes in Quaternary science and links with potential employers. This consortium of staff constitutes the strongest teaching team in the UK for the provision of Masters' teaching in the field of non-marine Quaternary earth science and environmental change. You’ll have the chance to contribute to this leading research culture with your own individual research project.

Study a Masters degree in Quaternary Science and you’ll develop a thorough understanding of many contemporary environmental issues, including climate change, biological responses to environmental change and soil erosion. and be well placed to pursue a rewarding career in your chosen field.

From time to time, we make changes to our courses to improve the student and learning experience. If we make a significant change to your chosen course, we’ll let you know as soon as possible.

Core Modules

  • In this module you will develop an understanding of the processes that lead to the accumulation of sediment sequences, becoming familiar with the strengths and limitations of sediment sequences as archives of palaeoenvironmental change. You will learn how to record sediment characteristics and attributes in the field and explain the main techniques used to construct terrestrial stratigraphies. You will consider the issues associated with constructing stratigraphies within the fragmented terrestrial record and examine the problems of relating these stratigraphies to climatic events in the continuous marine isotopic record. You will also analyse the use of terrestrial stratigraphies in interpreting climatic events and transitions.

  • In this module you will develop an understanding of the nature and process of climate forcing factors during the Quaternary, including external factors, such as tectonics and orbital forcing, and internal factors, such as ocean circulation, ice sheets, and greenhouses gases. You will look at the archives available to provide Quaternary palaeoclimate records, including ocean and lake sediments, ice cores, and tree rings, and how available proxies are used to reconstruct past climates, such as stable isotopes, microfossils, sedimentology, radiogenic isotopes and biomarkers. You will examine the modelling methods used to reconstruct past climates, such as box, intermediate complexity, and the general circulation model (GCM), and gain an overview of Quaternary climate thesholds, cycles and major events, including onset of Northern Hemisphere glaiation, intensification of the Walker circulation, and the Mid-Pleistocene revolution.

  • In this module you will develop an understanding of important palaeoecological proxy methods used to reconstruct Quaternary environments and biotic assemblages. You will look at the methods used to obtain quantitative estimates of past environmental conditions using palaeoecological data. You will consider the principal methods used to date Quaternary sequences and their limitations, and combine these with chronological data in order to construct realistic age models from which the timing, rate and persistence of environmental changes can be inferred. You will also examine how these procedures and their outcomes fit into the wider models of past environmental change and their potential for testing models of future environmental change.

  • In this module you will develop an understanding of the essential field techniques used in Quaternary research, including remote sensing, surveying, mapping, coring and other methods. You will learn how to integrate field data and light detection and ranging (LiDAR) with geographical information systems (GID) to generate and interpret landform models. You will become proficient in the use of graphics for Quaternary sediment logs and other purposes, and consider how you present information, both orally and in the form of webpage design. You will also look at approaches to mapping and interpreting landforms and sediments in the field, acquiring a background in the history of glaciations in Scotland ahead of the fieldwork you will conduct in the Highlands.

  • In this module you will plan and conduct field-based investigations that address key modern research questions in Quaternary Science. You will visit the Western Highlands of Scotland, spending a sustained period in the field to gain in-depth experience of a range of field methods, including landform mapping, instrumental surveying, sub-surface coring, stratigraphic logging and applied numerical modelling. You will look at the extent, timing, rate and causes of growth and demise of the last glaciers to occupy the Western Highlands. You will work as part of a team for the integration of linked field investigations and data synthesis, and give an oral presentation of your field-based experimental results under mock-conference constraints. You will also present your research results in poster form.

  • You will design, execute and report a piece of professional-level research in an area of Quaternary science of your choosing. You will identify and conceptualise your research question, and undertake fieldwork and laboratory analysis in order to collect, synthesise and interpret different types of Quaternary science data. A member of academic staff will act as your supervisor, and you will be expected to give an oral presentation of your dissertation proposal to the wider department. You will provide a project plan which outlines the timescales and resources required to successfully complete your investigation, and for laboratory-based dissertations, you may receive direct training in specialist techniques from your supervisor. Your final submission will include a written report that includes maps and graphic presentations of your results.

  • This module will describe the key principles of academic integrity, focusing on university assignments. Plagiarism, collusion and commissioning will be described as activities that undermine academic integrity, and the possible consequences of engaging in such activities will be described. Activities, with feedback, will provide you with opportunities to reflect and develop your understanding of academic integrity principles.


  • Geospatial and Temporal Data Science
  • Landscape Dynamics and Hazards

Optional Modules

There are a number of optional course modules available during your degree studies. The following is a selection of optional course modules that are likely to be available. Please note that although the College will keep changes to a minimum, new modules may be offered or existing modules may be withdrawn, for example, in response to a change in staff. Applicants will be informed if any significant changes need to be made.

  • In this module you will develop an understanding of the use of Coleoptera as environmental and climatic indicators. You will look at the recovery and extraction of insect remains from sediments and their identification using comparative collections and published keys. You will consider their use for stratigraphical correlation and quantification of past conditions using approaches such as the mutual climatic range method (MCR). You will examine the reasons for discrepancies between palaeoclimatic reconstructions derived from different paleoecological data sets, and assess the limitations of using insect remains for stratigraphic correlation. 

  • In this module you will develop an understanding of the basic taxonomy and identification techniques associated with a selection of microfossil groups. You will look at the key strengths and weaknesses relating to diatoms, foraminifera and testate amoebae when undertaking Quarternary investigations. You will collect, present and interpret data from these groups, and apply the principles of microfossil analysis to produce Quaternary environmental reconstructions.

  • In this module you will develop an understanding of the key issues in Late Pleistocene glacial meltwater palaeohydrology and Holocene alluvial systems. You will consider how Late Pleistocene meltwater pulses influence palaeoclimate and the role of glacial lake outburst floods in causing regional to local scale catastrophic changes in the landscape. You will look at the roles of allogeneic versus autogenic drivers of change in Late Quaternary fluvial systems, including control on fluvial terrace formation and preservation. You will also examine Holocene climate change and flooding through evidence from palaeoflood hydrology, using geomorphological mapping and coring, and floodplain stratigraphy, to reconstruct floodplain environments.

You will benefit from small group learning and an intense but friendly atmosphere, and will receive individual mentoring and career advice from our staff (both from your personal tutor and a dissertation supervisor).

Assessment is carried out by a variety of methods including coursework, practical exercises, field reports and a dissertation.


Archaeology, Botany, Ecology, Environmental Science, Environmental Studies, Geography and Geology.

Normally, we require a UK 2.2 (Honours) or equivalent in Archaeology, Botany, Ecology, Environmental Science, Environmental Studies, Geography, Geology. Candidates with professional qualifications or relevant professional experience in an associated area will also be considered but will be required to demonstrate proficiency in theoretical aspects of the subject.

International & EU requirements

English language requirements

All teaching at Royal Holloway is in English. You will therefore need to have good enough written and spoken English to cope with your studies right from the start.

The scores we require
  • IELTS: 6.5 overall. Writing 7.0. No subscore lower than 5.5.
  • Pearson Test of English: 61 overall. Writing 69. No subscore lower than 51.
  • Trinity College London Integrated Skills in English (ISE): ISE III.

Country-specific requirements

For more information about country-specific entry requirements please see here.

Study Quaternary Science at Royal Holloway and you’ll graduate with excellent employability prospects. Our recent alumni have gone on to enjoy careers in the British Geological Survey, Natural England, the Environment Agency, journal publishing houses, Research Councils, environmental archaeology and museums, as well as academic positions within universities. 

Over the past decade, around 70% of Quaternary Science graduates have gone on to study at PhD level, with the Royal Holloway Centre for Quaternary Science providing opportunities to participate in internationally significant research programmes.

Home (UK) students tuition fee per year*: £10,100

EU and international students tuition fee per year**: £20,700

Other essential costs***: You should budget between £200 and £400 for travel to fieldwork sites.

How do I pay for it? Find out more about funding options, including loans, grants, scholarships and bursaries.

* and ** These tuition fees apply to students enrolled on a full-time basis. Students studying on the standard part-time course structure over two years are charged 50% of the full-time applicable fee for each study year.

All postgraduate fees are subject to inflationary increases. This means that the overall cost of studying the course via part-time mode is slightly higher than studying it full-time in one year. Royal Holloway's policy is that any increases in fees will not exceed 5% for continuing students. For further information, please see our terms and conditions. Please note that for research courses, we adopt the minimum fee level recommended by the UK Research Councils for the Home tuition fee. Each year, the fee level is adjusted in line with inflation (currently, the measure used is the Treasury GDP deflator). Fees displayed here are therefore subject to change and are usually confirmed in the spring of the year of entry. For more information on the Research Council Indicative Fee please see the RCUK website.

** The UK Government has confirmed that EU nationals are no longer eligible to pay the same fees as UK students, nor be eligible for funding from the Student Loans Company. This means you will be classified as an international student. At Royal Holloway, we wish to support those students affected by this change in status through this transition. For eligible EU students starting their course with us during the academic year 2023/24, we will award a fee reduction scholarship equivalent to 30% of the difference between the UK and international fee for your course. This will apply for the duration of your course. Find out more

*** These estimated costs relate to studying this particular degree at Royal Holloway during the 2022/23 academic year, and are included as a guide. Costs, such as accommodation, food, books and other learning materials and printing, have not been included.

Explore Royal Holloway

Get help paying for your studies at Royal Holloway through a range of scholarships and bursaries.

There are lots of exciting ways to get involved at Royal Holloway. Discover new interests and enjoy existing ones.

Heading to university is exciting. Finding the right place to live will get you off to a good start.

Whether you need support with your health or practical advice on budgeting or finding part-time work, we can help.

Discover more about our 21 departments and schools.

Find out why Royal Holloway is in the top 25% of UK universities for research rated ‘world-leading’ or ‘internationally excellent’.

Royal Holloway is a research intensive university and our academics collaborate across disciplines to achieve excellence.

Discover world-class research at Royal Holloway.

Discover more about who we are today, and our vision for the future.

Royal Holloway began as two pioneering colleges for the education of women in the 19th century, and their spirit lives on today.

We’ve played a role in thousands of careers, some of them particularly remarkable.

Find about our decision-making processes and the people who lead and manage Royal Holloway today.