Skip to main content

Petroleum Geoscience by Distance Learning

Petroleum Geoscience by Distance Learning

MSc
  • Option 2 years full time or 5 years part time
  • Year of entry 2021
  • Campus Egham

The course

The hydrocarbon industry is crucial to provide us with domestic energy, transportation, plastics and other everyday needs. Petroleum Geoscience by Distance Learning with the University of London lets you earn a Masters degree in this booming sector which fits around your work or family commitments.

Choose from a range of course modules to tailor your learning, studying online over a period of years to earn your MSc. This flexible programme lets you choose between the standard course structure, a postgraduate diploma or a series of individual taught courses, letting you fit your studies around your daily life.

You’ll graduate with a Masters degree from the University of London by studying with the University of London International Programmes featuring academic direction from the renowned Royal Holloway Department of Earth Sciences. The programme finishes with a one-week field trip and research project, letting you contribute to our leading research culture while you develop your skills and knowledge.

Royal Holloway is recognised as one of the world’s premier training centres for the hydrocarbon industry, and has run a Petroleum Geoscience MSc programme since 1985. We’ve established invaluable links within the industry while helping over 600 graduates from 32 countries progress into rewarding careers in the Earth Sciences. Study Petroleum Geoscience (by Distance Learning) to enhance your career development without the need for full-time study. 

All applications must be made through the University of London International Programmes website.

Make an enquiry

  • Study a programme recognised internationally as one of the industry’s best.
  • Benefit from adaptable part-time learning fitted around your daily life.

Core Modules

  • This module is split into three components. The first will introduce you to modern plate tectonic theory and its application to understanding of formation of sedimentary basins based on earthquake data, tomography, gravity and magnetics. The second covers different tectonic settings and examines how the mechanical properties of plates can be applied to understand deformation, subsidence and heat flow within sedimentary basins. The third examines a range of terranes through the interpretation of remote sensing imagery and includes training in the use of geographical information systems (GIS) for compiling geological databases.

  • In this module you will develop an understanding of the methods by which seismic data are acquired and the impact of acquisition parameters on data quality. You will look at the basics of horizon and fault correlation, tying seismic data to well data, and 2D and 3D interpretation methodologies. You will consider the principles of seismic wave theory, the main steps involved in the processing of a typical seismic processing sequence, and the limitations of the technique in terms of imaging the subsurface. You will learn and apply industry-standard seismic interpretation workflows.

  • In this module you will learn to analyse geological structures ranging from outcrops to regional scale and to interpret and model their geometrical, kinematical and mechanical evolution. You will develop an understanding how geophysical and remote-sensing data can be used to interpret and model surface and subsurface structures. You will interpret a wide range of geological structures and you will learn how this knowledge can be applied to the analysis of subsurface structures and their relevance for stability and fluid flow in the subsurface. Further practical skills training of this module incorporates field-based training on subseismic-scale folds & faults related fracture systems using world-famous outcrop studies in Somerset in Devon, rock mechanics, geomechanics and structural analysis of sedimentary basins in diverse tectonic settings.

  • In this module you will develop an understanding of the processes of sediment supply and transport in clastic and carbonate sedimentary systems. You will look at depositional processes and the characteristics of deposits formed in glacial, aeolian, alluvial fan, fluvial, lacustrine, lagoonal, coastal, marine shelf and deep marine environments. You will examine carbonate sedimentary systems and the application of sequence stratigraphy in analysing carbonate platforms and ramps. You will also carry out practical work involving the description and interpretation of sediment cores and the use of that data to construct palaeogeographic maps.

  • In this module you will develop an understanding of the basic physical principles of reservoir geoscience and how to apply them in general reservoir studies. You will look at reservoir geophysics, including the standard technique used in well-log analysis, permeability development and maintenance in porous and fractured reservoirs, and an introduction to amplitude versus offset (AVO) and seismic inversion analyses. You will examine seismic interpretation techniques, including training in the use of standard software for reservoir geoscience, such as Petrel. You will consider porosity and permeability development and fluid transport in porous and fractured reservoirs, analysing fracture-related permeability and fluid transport using numerical approaches. You will evaluate the use of Darcy's law for flow in porous rocks and the cubic law for flow in rocks, seeing how these laws apply together in large fault zones, and their overall effect on, and control of, fluid transport in reservoirs.

  • In this module you will develop an understanding of the various elements of a petroleum system, including source rocks, migration pathways, reservoirs, seals and trapping structures. You will look at source rock deposition and geochemistry, kerogen kinetics and numerical basin modelling. Using an Eastern Mediterranean basin example, you will carry out play-fairway analysis to construct petroleum system summary charts, and produce gross depositional environment (GDE) and common risk segment (CRS) maps. You will examine hydrocarbon plays, using quantitative methods, and conduct volumetric estimates, risk analyses and simple economic analysis of individual leads and prospects. Working as part of a team, you will integrate data from various sources to conduct a basin or play-fairway petroleum system evaluation in a major semi-mature hydrocarbon-bearing basin.

  • You will have the opportunity to carry out an in-depth piece of independent research on a topic of your choice within the field of energy geoscience. You will carry out research in collaboration with companies in the petroleum and renewable industry, who will also provide data and / or a component of your supervision. You will attend an induction session at the start of the project and present short updates at regular review seminars. You will produce a report and give an oral and poster presentation at a symposium attended by examiners and guests from the industry.

     

Optional Modules

All modules are core

Full details of the assessment process can be found on the University of London International Programmes website.

This course may be studied up to 5 years part-time.

2:1

A physical science subject related to geoscience.

Work experience in the oil and gas industry, preferably carrying out evaluation of conventional and/or unconventional petroleum systems, but any technical oil and gas related work will be considered. Sufficient relevant work experience may be considered to replace the requirement for a second class honours degree qualification in geoscience; cases are considered on an individual basis.

Applicants for the MSc must demonstrate that they have access to interpretation software, data and local expert supervision before they can register for and complete the research project module PGM051 necessary to complete the MSc. Usually this means applicants should be currently in employment with an oil and gas company, but exceptions can be made for students who can arrange data, software and supervision by other means.

You do not need to be currently in employment within the oil and gas industry to complete the six taught modules. Successful completion of these modules is sufficient to qualify for a PG Diploma.

International & EU requirements

English language requirements

All teaching at Royal Holloway is in English. You will therefore need to have good enough written and spoken English to cope with your studies right from the start.

The scores we require
  • IELTS: 6.5 overall. No subscore lower than 5.5.
  • Pearson Test of English: 61 overall. Writing 54. No subscore lower than 51.
  • Trinity College London Integrated Skills in English (ISE): ISE III.
  • Cambridge English: Advanced (CAE) grade C.

Country-specific requirements

For more information about country-specific entry requirements for your country please see here.

Petroleum Geoscience (by Distance Learning) lets you earn a desirable Masters degree while studying part-time alongside employment. You’ll graduate with excellent employment prospects in a sector with many well-paid career opportunities in the UK and abroad, as well as the option to progress into further postgraduate study. 

Royal Holloway, University of London has taught a Petroleum Geoscience programme since 1985, and it’s now recognised as one of the premier training facilities in the hydrocarbon industry. You’ll benefit from strong industry links, and a track record of helping 600 graduates from 32 countries progress to rewarding careers in the Earth Sciences.

  • The MSc is ideal for hydrocarbon industry professionals who wish to develop their knowledge and skills alongside their work;
  • Graduates will be trained in the skills needed to address a range of exploration and production challenges;
  • You'll join a worldwide network of alumni who are successful industry professionals in oil companies, geoscience IT, consultancy, and academia.

Home (UK) students tuition fee per year*: £15387

EU and International students tuition fee per year**: £15387

Other essential costs***: Please visit the University of London website for information about Distance Learning fees and funding.

How do I pay for it? Find out more about funding options, including loans, grants, scholarships and bursaries.

* and ** These tuition fees apply to students enrolled on a full-time basis. Students studying on the standard part-time course structure over two years are charged 50% of the full-time applicable fee for each study year.

All postgraduate fees are subject to inflationary increases. This means that the overall cost of studying the programme via part-time mode is slightly higher than studying it full-time in one year. Royal Holloway's policy is that any increases in fees will not exceed 5% for continuing students. For further information see tuition fees see our terms and conditions. Please note that for research programmes, we adopt the minimum fee level recommended by the UK Research Councils for the Home tuition fee. Each year, the fee level is adjusted in line with inflation (currently, the measure used is the Treasury GDP deflator). Fees displayed here are therefore subject to change and are usually confirmed in the spring of the year of entry. For more information on the Research Council Indicative Fee please see the RCUK website.

** For EU nationals starting a degree in 2021/22, the UK Government has recently confirmed that you will not be eligible to pay the same fees as UK students. This means you will be classified as an international student. At Royal Holloway, we wish to support those students affected by this change in status through this transition. For eligible EU students starting their course with us in September 2021, we will award an automatic fee reduction which brings your fee into line with the fee paid by UK students. This will apply for the duration of your course.

*** These estimated costs relate to studying this particular degree programme at Royal Holloway. Costs, such as accommodation, food, books and other learning materials and printing, have not been included.

 

Earth Sciences Postgraduate Admissions

Lynne White, Postgraduate Programmes Coordinator

+44 (0)1784 443581

94% Percentage of Department of Earth Sciences' research ranked world-leading or internationally excellent

Source: REF, 2014

2nd Ranking in the UK for Earth Sciences research

Source: REF, 2014

Explore Royal Holloway

Get help paying for your studies at Royal Holloway through a range of scholarships and bursaries.

There are lots of exciting ways to get involved at Royal Holloway. Discover new interests and enjoy existing ones

Heading to university is exciting. Finding the right place to live will get you off to a good start

Whether you need support with your health or practical advice on budgeting or finding part-time work, we can help

Discover more about our 21 departments and schools

Find out why Royal Holloway is in the top 25% of UK universities for research rated ‘world-leading’ or ‘internationally excellent’

They say the two most important days of your life are the day you were born, and the day you find out why

Discover world-class research at Royal Holloway

Discover more about who we are today, and our vision for the future

Royal Holloway began as two pioneering colleges for the education of women in the 19th century, and their spirit lives on today

We’ve played a role in thousands of careers, some of them particularly remarkable

Find about our decision-making processes and the people who lead and manage Royal Holloway today