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We successfully fabricated and characterized superconducting flux qubits coupled to 
an open 1D space by means of resonance fluorescence and studied its dynamics by 
measuring evolutions of its coherent and incoherent emission. The qubit can be 
considered as an artificial atom with controllable parameters. We observe strong 
interaction of the artificial atom with the electromagnetic field, which can result in 
99% extinction of propagating waves. Furthermore, states of the atom were fully 
controllable by resonant excitation microwave pulses. This allows applications of 
controllable artificial atoms in quantum optics and photonics. 
 

 

Device Fabrication. 

 

The flux qubits have been fabricated in the cleanroom facilities at the Royal 

Holloway Physics Department. A scanning-electron micrograph of the device 

is presented in Fig. 1. 

 

 

 
 

Our flux qubits are superconducting loops interrupted by four 

Josephson junctions (JJ) [1]. Three JJs are identical to each other, while the 

fourth one  has a reduced size by a factor of 0.5. The qubits are fabricated by 

Figure 1: (a) False-colored scanning-electron micrograph (SEM) of a flux qubit coupled to a 
1D transmission line. The flux qubit consists of a macroscopic superconducting loop 
interrupted by four Josephson junctions that are inductively coupled to the line. 
(b) Six flux qubits with varying loop area inductively coupled to the transmission line. 
Colour-code: Yellow, blue, and violet correspond to gold, aluminum and the substrate 
respectively. 
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means of electron-beam lithography and the film is deposited using shadow 

evaporation technique with oxidation. There are 6 qubits coupled to the 

transmission line in each experimental sample. 

The coplanar transmission line with a characteristic impedance Z =  50 

Ω is made by patterning a gold film on a silicon substrate. In the middle of the 

chip, the central conductor of the waveguide is narrowed and replaced by 

aluminium. The latter is deposited together with the qubits using shadow 

evaporation. The experiment is performed in a dilution refrigerator at a 

temperature of about 15 mK. 

 

Theoretical background 

 

In order to understand the behavior of a qubit as an artificial atom, discussion 

of the relevant theory is required. The loops, interrupted by Josephson 

junctions (identical to a flux qubit [1]) and threaded by a bias flux Φb close to 

a half flux quantum Φ0/2, shares a segment with the transmission line, which 

results in a loop-line mutual inductance M mainly due to kinetic inductance of 

the shared segment [2]. The two lowest eigenstates of the atom are naturally 

expressed via superpositions of two states with persistent current, pI , flowing 

clockwise or counterclockwise. In the energy eigenbasis, the lowest two levels 

〉g|  and 〉e|  are described by the truncated Hamiltonian /2= zaH σω! , where 

22
0= εωω +a  is the atomic transition frequency and iσ  ( zyxi ,,= ) are the 

Pauli matrices. Here, Φδε pI2=!  ( /20Φ−Φ≡Φ bδ ) is the energy bias 

controlled by the bias flux, and 0ω!  is the anticrossing energy between the 

two persistent current states. The excitation energies of the third and higher 

eigenstates are much larger than aω! ; therefore they can be neglected in this 

analysis. 

We consider a dipole interaction of the atom with a field of an 

electromagnetic 1D wave. In the semiclassical approach of quantum optics, 

the external field of the incident wave tiikxeItxI ω−
00 =),(  (here ω  is the 

frequency and k  is the wavenumber) induces the atomic polarization. The 

atom with characteristic loop size ∼ 10 µm (negligibly small compared to the 



wavelength λ ∼ 1 cm) placed at 0=x  generates scattered waves 
tixik

cc eItxI ω−||
ss =),( , propagating in both directions, forward and backward. 

The current oscillating in the loop under the external drive induces an 

effective magnetic flux φ , playing a role of atomic polarization. The net wave 
tixik

c
ikx eeIeItxI ω−+ )(=),( ||

s0  satisfies the 1D wave equation 

φδ ttttxx xcIvI ∂∂−∂ − )(=2 , where the wave phase velocity is lcv 1/=  ( l  and 

c  are inductance and capacitance per unit length) and the dispersion relation 

is vk=ω . 

At the degeneracy point, when 0=ε  and 0=ωωa , the dipole 

interaction of the atom with the electromagnetic wave in the transmission line 

is xpnt tIH σφ )](0,[Re= 0i −  , where the dipole moment matrix element 

pp MI=φ . Then in the rotating wave approximation, the standard form of the 

Hamiltonian of a two-level atom interacting with the nearly resonant external 

field is   
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Here 0= ωωδω −  is the detuning and 0= IpφΩ!  is the dipole interaction 

energy. The time-dependent atomic dipole moment can be presented for a 

negative frequency component as ti
p et ωσφφ −−〉〈〉〈 =)( , and the boundary 

condition for the scattered wave generated due to the atomic polarization 

satisfies the equation 〉〈− −σφω pc cIik 2
s =/2)(2 , where )/2(= yx iσσσ ±± . 

Assuming that the relaxation of the atom is caused solely by the quantum 

noise of the open line, we obtain the relaxation rate ))/((= 22
1 Zp !!ωφΓ  (here 

clZ /=  is the line impedance) and find  
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 This expression indicates that the atomic dissipation into the line reveals 

itself even in elastic scattering. 

Due to this dissipation further analysis of the evolution of the density 

matrix is required. The atom coupled to the open line is described by the 



density matrix ρ , which satisfies the master equation ][ˆ],[= ρρρ LHi +−
!

" . 

At zero temperature, the simplest form of the Lindblad operator 

)(=][ˆ 21 geegezL ρσρσρσρ −+ +Γ−Γ−  describes energy relaxation (the first 

term) and the damping of the off-diagonal elements of the density matrix with 

the dephasing rate ϕΓ+ΓΓ /2= 12  , where ϕΓ  is the pure dephasing rates. It is 

convenient to define reflection and transmission coefficients r  and t  

according to 0s = rII c −  and 0s0 = tIII c+ , and, therefore, rt −1= . From Eq. 2 

we find the stationary solution  
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where the maximal reflection amplitude 210 /2= ΓΓηr  at 0=δω . Here η  

presents dimensionless coupling efficiency to the line field, including non-

radiative relaxation. The maximal possible power extinction ( 2||1 t− ) can 

reach 100% when 1|=| 0r . It takes place for 1=η  and /2= 12 ΓΓ , that is, in the 

absence of pure dephasing, 0=ϕΓ . In such case, the wave scattered forward 

by the atom is canceled out due to destructive interference with the incident 

wave, 0= IIsc − . Note that although Eq. 3 is obtained for the degeneracy point 

when 0=ε , it remains valid in the general case of 0≠ε  if the dipole 

interaction energy Ω!  is multiplied by aωω /0 . 

 

 

Transmission Spectroscopy 

 

The excitation energy of the atom is revealed by transmission spectroscopy 

(Fig. 2). Owing to the broadband characteristics of the transmission line, we 

are able to sweep the frequency of the incident microwave in a wide range and 

monitor the transmission. We detect three out of the six qubits with the 

remaining three being out of our measurement range. Note that the wide range 

of the energies has been chosen on purpose for optimisation of our fabrication 

parameters. We observe the systematic change of the energies according to 

our expectations, which indicates a 100% fabrication yield.  



 

As shown in Fig. 3, the resonance reveals itself as a sharp dip in the 

power transmission coefficient 2|| t . At resonance, the power extinction 

reaches its maximal value of 99%, which suggests that the system is well 

isolated from other degrees of freedom in the surrounding solid state 

environment and behaves as an isolated atom in open space, coupled only to 

the electromagnetic fields in the space. The resonance frequency aω  is traced 

as a function of the flux bias Φδ . By fitting the data, we obtain for the three 

qubits ω0 / 2π = 2.450 GHz, 5.216 GHz and 14.678 GHz at 0=Φδ  (the 

degeneracy points), and the persistent current, I p = 465  nA, I p = 416  nA and 

I p = 273  nA respectively 

 
 

 

 

	  
	  

 

 

 

Figure 2: Qubit Spectroscopy. Power transmission coefficient |t|2 as a function of flux 
bias, , and incident microwave frequency, f. 

Figure 3: Power transmission 
coefficient at  versus 
incident wave detuning 
from the resonance frequency 

GHz with a 
driving power of -28dBm. The 
maximal power extinction of 99% 
occurs at resonance. 



Mollow triplet 

 

So far we have investigated elastic Rayleigh scattering in which the incident 

and the scattered waves have the same frequency. However, the rest of the 

power ( )22
0s ||||1= rtWW c −−ʹ′  is scattered inelastically and can be observed in 

the power spectrum. Figure 4 shows the spectrum measured at the degeneracy 

point ( 0=Φδ ) at fixed driving powers. It manifests the resonance 

fluorescence triplet, also known as the Mollow triplet. 

 

 

 

 

 

 

 

 

 

 

 

 

In the case of a strong driving field ( 2
1

2 Γ>>Ω ), the expression for the 

inelastically scattered power simplifies to ( ) 0
22

1s / WW c ΩΓ≈ʹ′ , which is 

independent of the incident power and can be rewritten as /21s Γ≈ʹ′ ω!cW : The 

atom is half populated by the strong drive and spontaneously emits with rate 

1Γ . Assuming 1=η , the spectral density measured in one of the two 

directions is expected to be  
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Figure 4: The Mollow Triplet: Spectrum measured at the degeneracy point ( ) 
under a resonant drive with the power corresponding to (a) -30dBm, (b) -15dBm, (c) 
-10dBm, and  
(d) 0dBm. 
 



where half-width of the central and side peaks are 2= Γcγ  and 

)/2(= 21 Γ+Γsγ . Our results are in good agreement with the theory indicating 

high collection efficiency of the emitted photons due to the 1D confinement of 

the mode. The shift of the side peaks, Ω± , from the main resonance depends 

on the driving power. The intensity plot in Fig. 5 shows how the resonance 

fluorescence emission depends on the driving power.  

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
Observation of quantum oscillation 
 
Finally, we have studied the dynamics of the artificial two-level atom in an 

open 1D space by measuring evolution of its coherent and incoherent 

emission. 

 The qubit states are fully controllable by resonant excitation 

microwave pulses. The coherent emission – a direct measure of superposition 

in the atom – exhibits decaying oscillations shifted by π/2 from oscillations of 

the incoherent emission, which, in turn, is proportional to the atomic 

population. The emission dynamics provides information about states and 

properties of the atom. 

Manipulating the atomic states by microwave pulses, one can perform 

the quantum state and process tomography. The excited atom is a dynamical 

system, which continuously emits radiation to the line, similarly to natural 

atoms in the open space. However differently from the optical measurements 

of the natural atoms, the collection efficiency of the emission to the 1D 

Figure 5: Resonance fluorescence emission 
spectrum as a function of the driving power. 



transmission line by the artificial atom is very high due to its strong coupling 

[3]. 

The dynamics of such a system is described similarly to a spin-1/2 in 

the magnetic field and is governed by the optical Bloch equations !!
!"
= 𝑩𝜎 +

𝑏, where  
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𝑏 = 0,0,−Γ1 , and 𝜎 = 𝜎! , 𝜎! , 𝜎!  is a vector of the expectation 

values of the Pauli matrices. This vector represents the atomic state, 

accounting incoherent processes of relaxation with the rate Γ1 , decay of 

z-component, and dephasing with the rate Γ2 = γ + Γ1/2 ,decay in xy-

plane, where γ is the pure dephasing rate. In the Rabi rotation, the phase 

φ controls the axis; e.g., φ = 0 and φ = π/2 cause the spin rotations 

around x- and y- axes, respectively. Combining pulses with different φ, 

one can controllably rotate the spin, while 𝜎 < 1| subjected to the 

incoherent processes. 

 

Figure 6:  (a) Measurement circuit diagram. (b) General pulse sequence (upper panel) 
with schematic atomic dynamics (lower panel): The driving pulse P is used to prepare 
the atomic states, and the emission from the atom is detected during the readout 
pulse R. 
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A schematic diagram of the measurement setup is presented in Fig. 

6(a). We prepare the atom in a mixed state by one microwave pulse (denoted 

by P) of lengths ∆tP applied at times tP. A continuous microwave is chopped 

by the rectangular pulse P with the chopper consisting of a high-frequency 

mixer. The signal is delivered to the sample in a dilution refrigerator (at T ≈ 

15 mK) through a coaxial cable. The output signal is amplified by a cryogenic 

amplifier and a room-temperature amplifier. The signal is detected by a vector 

network analyzer (VNA) in the homodyne measurement of the coherent 

emission. Coherent and incoherent dynamics of the system is studied by 

measuring the emission from the atom. A single microwave pulse P of varied 

length ∆tP is applied to the atom with the readout pulse R following right after 

P as illustrated in Fig. 6 (b).  

Figure 7 shows the coherent dipole emission measured by the VNA, 

which is directly proportional to ⟨σ−⟩. The oscillations decay, while the 

emission saturates to a finite stationary level defined by ⟨iσ−⟩ = 

(Γ1Ω/2)/(Γ1Γ2 + Ω2) (≡ ⟨σy⟩/2) [4]. The emission at different driving 

powers is exemplified in Fig. 7(a). 

 

 
 

 

Figure 7: Rabi Oscillations. (a) Intensity plot of quantum oscillations as a 
function of driving power and delay time. (b) Evolution of the amplitude of 
coherent emission from our 2-level system at a fixed driving power of -6dBm. 
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