Royal Holloway, University of London
 Course specification for an undergraduate award
 BSC MATHEMATICS WITH PHILOSOPHY (G1V5)

Section 1 - Introduction to your course

This course specification is a formal document, which provides a summary of the main features of your course and the learning outcomes that you might reasonably be expected to achieve and demonstrate if you take full advantage of the learning opportunities that are provided. Further information is contained in the University prospectus, and in various handbooks, all of which you will be able to access online. Alternatively, further information on the University's academic regulations and policies can be found here. Further information on the University's Admissions Policy can be found here.

Your degree course in BSc Mathematics with Philosophy is delivered in three stages, each of which comprises one year of full-time study during which you must follow modules to the value of 120 credits. In stage one the mandatory modules you will take in the Department of Mathematics seek to provide a broadly based introduction to mathematics, which will develop manipulative skills, understanding of the key concepts and the ability to construct logical arguments. In stage two, you take modules which continue your study of abstract pure mathematics and its applications. In stage three, you choose optional modules in Mathematics to the value of go credits and you will be advised on appropriate combinations and pathways depending on your interests, stage one and two options, and possible future career paths. You may choose to undertake an extended project.

For joint and combined honours courses, please refer to the course specification for your secondary department's corresponding single honours course for further information on educational aims, and learning outcomes.

While Royal Holloway keeps all the information made available under review, courses and the availability of individual modules, especially optional modules are necessarily subject to change at any time, and you are therefore advised to seek confirmation of any factors which might affect your decision to follow a specific course. In turn, Royal Holloway will inform you as soon as is practicable of any significant changes which might affect your studies.

The following is a brief description for some of the most important terminology for understanding the content of this document:
Degree course - May also be referred to as 'degree programme' or simply 'programme', these terms refer to the qualification you will be awarded upon successful completion of your studies.
Module - May also be referred to as 'course', this refers to the individual units you will study each year to complete your degree course. Undergraduate degrees at Royal Holloway comprise a combination of modules in multiples of 15 credits to the value of 120 credits per year. On some degree courses a certain number of optional modules must be passed for a particular degree title.

Section 2 - Course details				Location of study
Date of specification update	April 2024	Level of study	Egham Campus	
Course award and title	BSc Mathematics with Philosophy	UCAS code	Undergraduate	
Course code	2274		$G_{1} V_{5}$	
Year of entry	$2024 / 25$	Royal Holloway, University of London	Other departments or schools involved in teaching the course	Department of Philosophy
Awarding body	Mathematics	Duration of the course	3 years	
Department or school	Full-time	Accredited by the Institute of Mathematics and its Applications (IMA) for the purpose of meeting in part the educational requirement for chartered status.	Mode(s) of attendance	Accrediting Professional, Statutory or Regulatory Body requirement(s)
Link to Coursefinder for further information:	https://www.royalholloway.ac.uk/studying-	For queries on admissions:	https://royalholloway.ac.uk/applicationquery	

Section 3 - Degree course structure

3.1 Mandatory module information

The following table summarises the mandatory modules which students must take in each year of study

Year	Module code	Module title	Credits	FHEO level	Module status (Mandatory Condonable MC or Mandatory Non-Condonable MNC
1	PY1002	Introduction to Modern Philosophy	15	4	MC
1	MT1300	Statistical Methods I	15	4	MC
1	MT1710	Mathematics: Calculus I	15	4	MC
1	MT1720	Mathematics: Calculus II	15	4	MC
1	MT1810	Mathematics: Introduction to Pure Mathematics	15	4	MC
1	MT1820	Mathematics: Linear Algebra I	15	4	MC
2	MT2320	Probability Theory	15	5	MC
2	MT2500	Mathematics: Scientific Programming	15	5	MC
2	MT2800	Mathematics: Linear Algebra II	15	5	MC
3	MT3050	Advanced Skills	15	6	MC

This table sets out the most important information for the mandatory modules on your degree course. These modules are central to achieving your learning outcomes, so they are compulsory, and all students on your degree course will be required to take them. You will be automatically registered for these modules each year. Mandatory modules fall into two categories: 'condonable' or 'non-condonable'.

In the case of mandatory 'non-condonable' (MNC) modules, you must pass the module before you can proceed to the next year of your course, or to successfully graduate with a particular degree title. In the case of mandatory 'condonable' (MC) modules, these must be taken but you can still progress or graduate even if you do not pass them. Please note that although Royal Holloway will keep changes to a minimum, changes to your degree course may be made where reasonable and necessary due to unexpected events. For example: where requirements of relevant Professional, Statutory or Regulatory Bodies have changed and course requirements must change accordingly, or where changes are deemed necessary on the basis of student feedback and/or the advice of external advisors, to enhance academic provision.

3.2 Optional modules

In addition to mandatory modules, there will be a number of optional modules available during the course of your degree. Although Royal Holloway will keep changes to a minimum, new options may be offered or existing ones may be withdrawn. For example, where reasonable and necessary due to unexpected events, where requirements of relevant Professional Statutory or Regulatory Bodies (PSRBs) have changed and course requirements must change accordingly, or where changes are deemed necessary on the basis of student feedback and/or the advice of External Advisors, to enhance academic provision. There may be additional requirements around option selection; please contact the Department for further information.

In stage one, you must take the specified modules and one option (15 credits) from the first year options offered by the Department of Mathematics.
In stage two, you must take options to the value of 45 credits from stage two modules offered by the Department of Mathematics, and a further 30 credits from optional modules taught in Philosophy.
In stage three, you must choose 75 credits of options from the list of stage three modules offered by the Department of Mathematics, and a further 30 credits from optional modules taught in Philosophy.

Section 4 - Progressing through each year of your degree course

For further information on the progression and award requirements for your degree, please refer to Royal Holloway's Academic Regulations.
Progression throughout the year/s is monitored through performance in summative or formative coursework assignments. Please note that if you hold a Student Visa and you choose to leave (or are required to leave because of non-progression) or complete early (before the course end date stated on your CAS), then this will be reported to UKVI.

All first year students on single, joint or combined honours courses offered all or in part by the School of Humanities, School of Performing and Digital Arts, or department of Politics, International Relations and Philosophy are required to pass a Moodle-based writing skills quiz in order to progress into the second year of study. The pass mark for the test is 60%.
Students may attempt the quiz as often as they wish with no penalties or capping. Students who meet the requirements for progression as stipulated in the Academic Taught
Regulations but fail to pass the Moodle-based Academic Integrity module will not be permitted to progress into their second year of academic study.

Section 5 - Educational aims of the course

The aims of this course are:

- to provide students with technical manipulative skills, the ability to read and write in the compressed language of mathematics, and the ability to distil a problem into a mathematical description of its essential detail;
- to ensure that students gain an appreciation of, and interest in, the logical structure of mathematics, and its use as an analytical and predictive tool in applications;
- to offer a wide range of optional modules to suit students' interests and strengths;
- to provide access to personal, academic and pastoral support;
- to enable students, on graduation, to compete effectively in employment or postgraduate study.

Section 6 - Course learning outcomes

In general terms, the courses provide opportunities for students to develop and demonstrate the following learning outcomes. (Categories - Knowledge and understanding (K), Skills and other attributes (S), and Transferable skills (*))

Course learning outcome	Level 4	Level 5	Level 6
1: Gain knowledge and understanding of mathematical concepts, mathematical methods, and abstract mathematical structures.	1.4.1: Develop knowledge and understanding of mathematical methods. 1.4.2: Gain knowledge and understanding of mathematical concepts such as number and function. 1.4.3: Develop spatial awareness in two and three dimensions. 1.4.4: Start to develop knowledge and understanding of abstract structures such as groups, matrices, and fields.	1.5.1: Embed knowledge and understanding of mathematical methods. 1.5.2 Embed knowledge of the abstract theory of matrices.	1.6.1: Extend knowledge and understanding of mathematical methods. 1.6.2 Extend knowledge of abstract structures such as groups.
2: Grow an understanding of results from a range of areas of mathematics, how these are interlinked, and how mathematics is key to some applications.	2.4.1: Develop the ability to take theoretical knowledge gained in one area and apply it elsewhere.	2.5.1: Develop knowledge and understanding of some results from a range of major areas of mathematics, statistics or operational research.	2.6.1: Develop knowledge and understanding of at least one major area of applications in which the mathematics is used in a serious manner and is essential for proper understanding.
3: Develop skills of numeracy, manipulation of mathematical expressions, and the analytic approach to solving problems.	3.4.1: Apply a high level of numeracy. 3.4.2: Develop the ability to manipulate and analyse complex mathematical expressions accurately.	3.5.1: Grow the ability to manipulate and analyse complex mathematical expressions accurately. 3.5.2: Develop a general ethos of numeracy and of analytical approaches to problem solving.	3.6.1: Develop the ability to provide accurate analysis of a situation, the factors involved and possible approaches to solution.
4: Develop the ability to argue logically, and to understand the role of formal proofs.	4.4.1: Develop the ability to make a sequence of logical steps, and reflect on the result.	4.5.1: Develop the ability to understand the role of logical mathematical argument and	4.6.1: Embed the ability to understand the role of logical mathematical argument and deductive reasoning, including formal proof.

		deductive reasoning, including formal proof.	
5: Develop the ability to formulate problems mathematically, to solve the resulting mathematical problems, and to interpret the results.	5.4.1: Begin to develop the ability to formulate problems in mathematical or statistical form using appropriate notation. 5.4.2: Begin to develop the ability to solve equations or inequalities arising from a problem analytically or numerically, and to interpret the results.	5•5.1: Develop the ability to formulate problems in mathematical or statistical form using appropriate notation. 5.5.2: Develop the ability to solve equations or inequalities arising from a problem analytically or numerically, and to interpret the results.	5.6.1: Grow the ability to formulate problems in mathematical or statistical form using appropriate notation. 5.6.2: Grow the ability to solve equations or inequalities arising from a problem analytically or numerically, and to interpret the results.
6: Gain the ability to work as a team, and to communicate mathematical results clearly to others.	6.4.1: Start the journey towards gaining the ability to communicate mathematical results clearly. 6.4.2: Contribute to discussions. 6.4.3: Work together with others as a team.	6.5.1: Develop the ability to communicate mathematical results clearly. 6.5.2: Develop good written and oral communication skills, which enable them to write coherently and contribute to discussions. 6.5.3: Continue to work together with others as a team.	6.6.1: Extend the ability to communicate mathematical results clearly, to both mathematicians and lay persons. 6.6.2: Continue to develop good written and oral communication skills, which enable them to write coherently, turn a rough draft into a convincing argument and contribute to discussions. 6.6.3: Extend team-working skills.
7: Gain and apply skills of timemanagement and develop a career plan.	7.4.1: Learn and apply general skills of timemanagement and organization. 7.4.2: Develop the skill of personal motivation and start the process of planning a career path.	7.5.1: Develop general skills of timemanagement and organization. 7.5.2: Develop employability skills, including personal motivation and the planning of a career path.	7.6.1: Further develop general skills of timemanagement and organization. 7.6.2: Continue to improve employability skills, and the planning of a career path.
8: Gain familiarity with computer methods in mathematics, and develop IT skills, including word-processing and use of the internet.	8.4.1: Introduce computer methods in mathematics and statistics. 8.4.2: Develop IT skills, including wordprocessing and use of the internet.	8.5.1: Gain familiarity with computer methods in mathematics and statistics. 8.5.2: Embed IT skills, including wordprocessing and use of the internet.	8.6.1: Extend the use of computer methods in mathematics and statistics. 8.6.2: Extend IT skills, including mathematical word-processing and use of the internet.

9: Develop the skill to work independently, using a variety of resources.	9.4.1 Develop the ability to learn independently, using a variety of media including books, and online resources.	9.5.1 Grow the skill to learn independently, using a variety of media including books, learned journals, the internet, and so on.	9.6.1 Extend the skill to work independently with persistence and patience, pursuing the solution of problems to their conclusion.
10: Understand the core questions, theories, and specialist terminology in the central areas of philosophy	10.4.1 Recall information about philosophical theories and understand the relevant terminology.	10.5.1 Discuss core philosophical questions and theories.	10.6.1 Explain the key issues in philosophical debates and theories.
11: Identify and analyse arguments made in a variety of contexts, both theoretical and practical.	11.4.1 Recognize an argument and understand the difference between good and bad arguments.	11.5.1 Assess the quality of arguments as used in a wide range of contexts.	11.6.1 Deploy arguments effectively and explain why poor arguments are ineffective.
12: Critically evaluate philosophical ideas from both historical and contemporary sources.	12.4.1 Begin to appreciate both the strengths and weakness of philosophical ideas.	12.5.1 Recognize strengths and weakness of philosophical ideas.	12.6.1 Explain fully the strengths and weakness of philosophical ideas.
13: Interpret complex philosophical texts, paying attention to different modes of argumentation and the variety of literary forms that philosophical writing can take.	13.4.1 Appreciate the variety of literary forms in which philosophy has and can been written.	13.5.1 Understand the different criteria used to assess the claims made if different types of philosophical text.	13.6.1 Critically assess a variety of different types of philosophical text and understand the strengths and weakness of different genres of writing.
14: Gather, organise, and deploy evidence from a variety of sources, assessing its nature and value.	14.4.1 Know how to identify and locate scholarly literature relevant to a given research topic.	14.5.1 Organize and assess sources of information relevant to a research topic.	14.6.1 Critically assess and make effective use of previous literature on a research topic in their own work.
15: Express philosophical ideas and arguments clearly and precisely, both in written work and orally.	15.4.1 Understand the importance of clarity and precision in philosophical discussion and writing.	15.5.1 Deploy well-formed arguments in discussion and written work.	15.6.1 Effectively argue for or against a view in a wide variety of contexts, both orally and in written work.

Section 7 - Teaching, learning and assessment

Teaching and learning on your course is closely informed by the active research of staff, particularly in the areas of Mathematics. In general terms, the course provides an opportunity for you to develop and demonstrate the learning outcomes detailed herein.

Teaching and learning is mostly by means of lectures, small group tutorials, problem-solving workshop sessions, written and oral feedback on coursework, practical sessions in statistics and computational mathematics, guided independent study and oral presentations. Assessment of knowledge and understanding is typically by formal examinations, coursework, examined essays, exercises, online tests and exercises, oral presentations and the dissertation or long essay. In addition, students may be involved in workshops and may produce various forms of creative work.

Contact hours come in various forms and may take the form of time spent with a member of staff in a lecture or seminar with other students. Contact hours may also be laboratory or, studio-based sessions, project supervision with a member of staff, or discussion through a virtual learning environment (VLE). These contact hours may be with a lecturer or teaching assistant, but they may also be with a technician, or specialist support staff.

The way in which each module on your degree course is assessed will also vary. Assessments designated as 'summative' will receive a mark which will count towards your overall mark for the module, and potentially your degree classification, depending on your year of study. On successful completion of the module you will gain the credits listed.

More detailed information on modules, including teaching and learning methods, and methods of assessment, can be found via the online Module Catalogue. The accuracy of the information contained in this document is reviewed regularly by the university, and may also be checked routinely by external agencies.

Section 8 - Additional costs

There are no single associated costs greater than $£ 50$ per item on this degree course.
These estimated costs relate to studying this particular degree course at Royal Holloway. General costs such as accommodation, food, books and other learning materials and printing etc., have not been included, but further information is available on our website.

Section 9 - Indicators of quality and standards

QAA Framework for Higher Education Qualifications (FHEQ) Level

4-6

Your course is designed in accordance with the FHEO to ensure your qualification is awarded on the basis of nationally established standards of achievement, for both outcomes and attainment. The qualification descriptors within the FHEO set out the generic outcomes and attributes expected for the award of individual qualifications. The qualification descriptors contained in the FHEQ exemplify the outcomes and attributes expected of learning that results in the award of higher education qualifications. These outcomes represent the integration of various learning experiences resulting from designated and coherent courses of study.

QAA Subject benchmark statement(s)

Subject benchmark statements provide a means for the academic community to describe the nature and characteristics of courses in a specific subject or subject area. They also represent general expectations about standards for the award of qualifications at a given level in terms of the attributes and capabilities that those possessing qualifications should have demonstrated.

Section 10- Intermediate exit awards (where available)

You may be eligible for an intermediate exit award if you complete part of the course as detailed in this document. Any additional criteria (e.g. mandatory modules, credit requirements) for intermediate awards is outlined in the sections below.

Award	Criteria	Awarding body
Diploma in Higher Education (DipHE)	Pass in 210 credits of which at least 90 must be at or above FHEQ Level 4 and at least 120 of which must be at or above FHEQ Level 5	Royal Holloway and Bedford New College
Certificate in Higher Education (CertHE)	Pass in 120 credits of which at least 90 must be at or above FHEQ Level 4	Royal Holloway and Bedford New College

