COURSE SPECIFICATION FORM

for new course proposals and course amendments

<table>
<thead>
<tr>
<th>Department/School:</th>
<th>Mathematics</th>
<th>Academic Session:</th>
<th>2015-16</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Title:</td>
<td>Quantum Theory II</td>
<td>Course Value:</td>
<td>(U/G courses = unit value, PG courses = notional learning hours) 0.5 unit</td>
</tr>
<tr>
<td>Course Code:</td>
<td>MT3250</td>
<td>Course JACS Code:</td>
<td>G100</td>
</tr>
<tr>
<td>Availability:</td>
<td>Term 2</td>
<td>Status:</td>
<td>Optional Condonable</td>
</tr>
<tr>
<td>Pre-requisites:</td>
<td>MT3200</td>
<td>Co-requisites:</td>
<td>-</td>
</tr>
<tr>
<td>Co-ordinator:</td>
<td>-</td>
<td>Course Staff:</td>
<td>-</td>
</tr>
</tbody>
</table>

Aims:
To derive methods, such as the Rayleigh-Ritz variational principle and perturbation theory, in order to obtain approximate solutions of the Schrödinger equation.
To introduce spin and the Pauli exclusion principle and hence explain the mathematical basis of the Periodic table of elements.
To introduce the quantum theory of the interaction of electromagnetic radiation with matter using time dependent perturbation theory.
To show how scattering theory is used to probe interactions between particles and hence to show how the probability or cross section for a scattering event to occur can be derived from quantum theory.

Learning Outcomes:
1. use various methods to obtain approximate eigenvalues and eigenfunctions of any given Schrödinger equation,
2. to understand the importance of spin in quantum theory,
3. to appreciate how the Periodic Table of elements follows from quantum theory,
4. to write down the Schrödinger equation for the interaction of electromagnetic radiation with the hydrogen atom and to work out photoabsorption cross sections for hydrogen,
5. to define the scattering cross section and to work it out for some simple systems.

Course Content:
Variational principles in quantum mechanics: the Rayleigh-Ritz variational principle. Bounds on energy levels for quantum systems.
Perturbation theory: Rayleigh-Schrödinger time-independent perturbation theory.
Perturbations of energy levels due to external electromagnetic fields.
Radiative transitions: the absorption and emission of electromagnetic radiation by matter. Photoabsorption cross-sections for the hydrogen atom.
Integral representations of the scattering amplitude. The Born approximation. Potential scattering.

Teaching & Learning Methods:
The total number of notional learning hours associated with this course are 150. 3 hours of lectures a week over 11 weeks. 33 hours total. 117 hours of private study, including work on problem sheets and examination preparation. This may include discussions with the course leader if the student wishes.

Key Bibliography:

Formative Assessment & Feedback:
Formative assignments in the form of 8 problem sheets. The students will receive feedback as written comments on their attempts.

Summative Assessment:
Exam: 100% Written exam. A two hour paper.

Updated Nov 15

The information contained in this course outline is correct at the time of publication, but may be subject to change as part of the Department’s policy of continuous improvement and development. Every effort will be made to notify you of any such changes.