Structural Estimation of a Model of School Choices: the Boston Mechanism vs. Its Alternatives*

Caterina Calsamiglia, Chao Fu and Maia Guell

May 2, 2014

Abstract

With its significant welfare implications, what procedure should be used to allocate students across public schools remains heatedly debated on. We develop and estimate a model of school choices by households under one of the most popular school choice systems known as the Boston mechanism. In our model, households differ both in their preferences for schools and in their sophistication types. Non-strategic households reveal their preferences truthfully when applying for schools. Strategic households may refrain from doing so because they take admissions probabilities into account. We recover the joint distribution of household preferences and sophistication types using administrative data from Barcelona. We conduct counterfactual policy analyses to compare the baseline mechanism with its alternatives.

*We thank Yuseob Lee for excellent research assistance. We are grateful to the staff at IDESCAT, and in particular to Miquel Delgado, for their help in processing the data. All errors are ours.
†Universitat Autonoma de Barcelona, Spain.
‡Please send correspondence to Chao Fu, Department of Economics, University of Wisconsin, 1180 Observatory Dr., Madison, WI 53703, USA. Email: cfu@ssc.wisc.edu.
§University of Edinburgh, Scotland.
1 Introduction

In many countries, every child is guaranteed free access to education in some public school. However, not all public schools are of the same quality, nor are higher-quality schools distributed evenly across residential areas. Designed to broaden households’ access to schools beyond their neighborhoods, public school choice systems have been increasingly adopted in many countries, including the U.S.1 On the one hand, the quality of schools to which students are assigned can have significant long-term effects for individual families as well as important implications on efficiency and equity for a society.2 On the other hand, schools are endowed with certain capacities and not all choices can be satisfied. As a result, how to operationalize school choice, i.e., what procedure should be used to assign students to schools, becomes a non-trivial question that remains heatedly debated on among policy makers and researchers.

One important debate centers around a procedure known as the Boston mechanism, which was used by Boston Public Schools (BPS) between 1999 and 2005 to assign K-12 pupils to city schools, and still is one of the most popular school choice systems in the world. In the Boston mechanism, a household submits its applications in the form of an ordered list of schools. All applicants are assigned to their first choices if there are enough seats in those schools. If a given school is over-demanded, applicants are admitted based on their priorities at that school. Those rejected from their first choices face dramatically decreased chance of being accepted to any other desirable schools since they can only opt for the seats that remain free after everyone’s first choice has been considered. Abdulkadiroğin and Sönmez (2003) show that the Boston mechanism is vulnerable to manipulation as some parents may refrain from ranking schools truthfully. In 2005, the BPS replaced the mechanism with the Gale-Shapley student deferred acceptance mechanism (henceforth GS) originally proposed by Gale and Shapley (1962), under which it is optimal for parents to rank schools truthfully.3

Although the vulnerability of the Boston mechanism to manipulation is widely

1Some studies have explored exogenous changes in families’ school choice sets to study the impacts of school choice on students’ achievement. For example, Lavy (2010) finds positive effects of the implementation of free choice on student performance. Hastings, Kane and Steiger (2009) find heterogeneous effects across families with different socioeconomic backgrounds.

2See Heckman and Mosco (2014) for a comprehensive review of the literature on human development and social mobility.

3See Abdulkadiroğin, Pathak, Roth and Sonmez (2005) for a description of the Boston reform.
agreed on, it remains unclear whether or not it should be replaced in other cities as well.4 In practice, the switch decision by the BPS was resisted by many parents. In theory, the efficiency and equity comparison between Boston mechanism and its alternatives remains controversial.5 The welfare implications of various mechanisms thus become an empirical question, one that needs to be answered before a switch from the Boston mechanism to GS or some other mechanisms is recommended more widely.

To answer this question, one needs first to quantify two essential but unobservable factors underlying households’ choices: household preferences and the distribution of strategic versus non-strategic households. Without knowing household preferences, one could not compare welfare across mechanisms even if household choices were observed under each alternative mechanism. Moreover, as choices are often not observed under counterfactual scenarios, one needs to predict which households would change their behaviors and how their behaviors would change, were the current mechanism switched to a different one. The knowledge of household preferences is not enough for this purpose, because households react differently depending on whether or not they are strategic. For example, a switch from the Boston mechanism to GS will induce behavioral changes only among strategic households who hide their true preferences under the Boston mechanism.

We apply our model to a rich administrative data set from Barcelona, Spain. The data contains information on applications, admissions and enrollment for all Barcelona families who applied for schools in the public school system in the years 2006 and 2007. It also contains information on applicants’ family addresses, hence home-school distances, and other family characteristics that allow us to better understand their decisions. Between 2006 and 2007, there was a change in the official definition of neighborhoods that significantly altered the set of schools a family had priorities for in the school assignment procedure.6 We estimate our model via simulated maximum likelihood using the 2006 pre-reform data. We conduct an out-of-sample validation of our estimated model using the 2007 post-reform data. The

4Pathak and Sönmez (2013) document switches in Chicago and England from the Boston mechanism to less-manipulable mechanisms, and argue that these switch decisions revealed government preferences against mechanisms that are (excessively) manipulable.

5See the literature review below.

6Calsamiglia and Guell (2014) exploit this change to show that a large fraction of families did behave strategically: they applied for schools within their residential area mainly because of the priority structure instead of pure distance concerns.
Using our estimated model, we conduct two sets of counterfactual policy experiments. In the first, we assess the performance of two popular alternatives to the Boston mechanism (BM): the GS mechanism and the top-trading-cycle mechanism (TTC). We find that a change from BM to GS benefits fewer than 10% of the households while hurting 28% of households. The average welfare decreases by an amount that is equivalent to a 270-meter increase in home-school distances. Moreover, the decrease in average welfare is larger for the non-strategic households, who account for about 4% of all households, than for the strategic households (550 meters vs. 260 meters). In contrast, a change from BM to TTC benefits over 20% of households and hurts 19% of them. The average welfare increases by an amount equivalent to a 140-meter decrease in home-school distances. TTC proves to be the most efficient mechanism out of the three alternatives. Compared to TTC, the current Boston mechanism inefficiently makes households apply for close-by but lower-quality schools.

In the second set of experiments, we evaluate the welfare impact of the 2007 reform by simulating outcomes for the 2007 cohort had they applied under the 2006 regime. We find that the 2007 reform generated 30% winners and 30% losers, but the welfare increases on average by an amount equivalent to a 150-meter decrease in home-school distance. The biggest winners were among the non-strategic households, who, on average, gained by an amount equivalent to a 1.2-kilometer decrease in home-school distance.

Our paper contributes to the ongoing debate on the design of school choice programs. Abdulkadiroğlu and Sönmez (2003) formulate the school choice problem as a mechanism design problem and point out the flaws of the widely used Boston mechanism, which has been echoed in the literature. Some studies suggest that the fact that strategic ranking may be beneficial under the Boston mechanism creates a potential issue of equity since parents who act honestly (non-strategic parents) may be disadvantaged by those who are strategically sophisticated (e.g., Pathak and Sönmez (2008)). Using pre-2005 data provided by the BPS, Abdulkadiroğlu, Pathak, Roth and Sönmez (2006) find that households that obviously failed to strategize were disproportionally unassigned. Calsamiglia and Miralles (2014) show that under certain conditions, the only equilibrium under the Boston mechanism is the one in which

\footnote{The authors were given access to the data by the BPS in order to demonstrate that "gaming" behavior existed among Boston parents.}
families apply for and are assigned to schools in their neighborhoods (i.e., schools for which they have high priorities), which causes a different type of concerns about equity across different neighborhoods.8 Besides equity, the Boston mechanism has also been criticized on the basis of efficiency. Experimental evidence from Chen and Sönmez (2006) and theoretical results from Ergin and Sönmez (2006) show that GS is more efficient than the Boston mechanism in complete information environments. However, in a recent series of studies, Abdulkadiroğlu, Che, and Yasuda (2011); Featherstone and Niederle (2011); and Miralles (2008) all provide examples of specific environments where the Boston mechanism is more efficient than GS. Abdulkadiroğlu, Che, and Yasuda (2011) also point out that some non-strategic parents may actually be better off under the Boston mechanism.

Although there have been extensive discussions about the strength and weakness of alternative school choice programs in the theoretical literature, empirical studies that are designed to quantify the differences between these alternatives have been sparse. Closely related to our paper, He (2012) estimates an equilibrium model of school choice under Boston mechanism using data from a Beijing neighborhood that contains four schools. Under certain assumptions, he estimates household preference parameters by grouping household choices, without having to model the distribution of household sophistication types. Assuming that a given fraction of non-strategic households exists uniformly across all demographic groups, he calculated welfare changes implied by a switch from the Boston mechanism to GS. On the one hand, the approach in He (2012) allows one to be agnostic about the distribution of household strategic types during the estimation, hence imposing fewer preassumptions on the data. On the other, it restricts his model’s ability to conduct cross-mechanism comparisons. Our paper complements He (2012) by estimating both households’ preferences and the distribution of their strategic types. With access to the applications and assignment outcomes for the entire city of Barcelona, we are also able to form a more comprehensive view of the alternative mechanisms.

The rest of the paper is organized as follows. The next section gives some background information about the public school system in Barcelona. Section 3 describes the model. Section 4 explains our estimation strategy and identification. Section 5 describes the data. Section 6 presents the estimation results. Section 7 conducts coun-

8These conditions include 1) some schools are perceived sufficiently worse than other schools by most families, and 2) there is no outside option.
terfactual experiments. The last section concludes. The appendix contains further details and additional tables.

2 Background

2.1 School System in Spain

The public school system in Spain consists of two types of schools, public and semi-public.\(^9\) Public schools are fully financed by the government and are free to attend. The operation of public schools follows rules that are defined both at the national and at the autonomous community level.\(^10\) Depending on the administrative level at which it is defined, a rule applies uniformly to all public schools nationally or autonomous-community-wise. This implies that all public schools in the same autonomous community are largely homogenous in terms of the assignment of teachers, school infrastructure, class size, curricula, and the level of (full) financial support per pupil.

Semi-public schools are run privately and funded via both public and private sources.\(^11\) The level of public support per pupil for semi-public schools is defined at the autonomous community level, which is about 60% of that for public schools. Semi-public schools are allowed to charge enrollee families for complementary service, and choose their own levels of service fees. In Barcelona, the service fee per year charged by semi-public schools is €1,280 on average and over €5,000 euros at the high end.\(^12\) On average, of the total financial resources for semi-public schools, government funding accounts for 63%, service fees account for 34%, and private funding accounts for 3%. Semi-public schools have much higher level of autonomy than public schools. They can freely choose their infrastructure facilities, pedagogical preferences and procedures. Subject to the government-imposed teacher credential requirement, semi-

\(^9\) Semi-public schools were added into the system under a 1990 national educational reform in Spain (LOGSE).

\(^10\) Spain is divided into 17 autonomous communities, which are further divided into provinces and municipalities. A large fraction of educational policies are run at the autonomous community (Comunidades Autonomas) and municipality levels (municipios) following policies determined both at the national and at the local levels. In particular, the Organic Laws (Leyes Orgánicas) establish basic rules to be applied nationally; while autonomous communities further develop these rules through what are called Decretos.

\(^12\) The median annual household income is €25,094 euros in Spain and €26,418 euros in Catalunya.
public schools have control over teacher recruiting and dismissal. However, there are some important regulations semi-public schools are subject to. In particular, all schools in the public school system, public or semi-public, have to accept all the students that are assigned to them via the centralized school choice procedure that we describe in the next subsection; and no student can be admitted to the public school system without going through the centralized procedure. In addition, all schools have the same national limit on class sizes.

Outside of the public school system, there are a small number of private schools, accounting for only 4% of all schools in Barcelona. Private schools receive no public funding and charge very high tuition. In Barcelona, private tuition ranges from 5,000 to 16,000 Euros per year. Private schools are subject to very few restrictions on their operation.

2.2 School Choice within the Public School System

The Organic Law 8/1985 establishes the right for families to choose schools in the public school system for their children. The national reform in 1990 (LOGSE) extended families’ right to guarantee the universal access for a child 3 years or older to a seat in the public school system, by requiring that preschool education (ages 3-5) be offered in the same facilities that offer primary education (ages 6-12). Although families are guaranteed some seats in the public school system, individual schools can be over-demanded. The Organic Law from 2006 (LOE) specifies broad criteria that autonomous communities shall use to resolve the overdemand for schools. Catalunya, the autonomous community for the city of Barcelona, has its own Decretos in which it specifies, under the guideline of LOE, how overdemand for given schools shall be resolved. In particular, it describes broad categories over which applicants may be ranked and prioritized, known as the priority rules.

Families get access to schools in the public school system via a centralized school choice procedure run at the city or municipality level, in which almost all families participate. Every April, participating families with a child who turns three in that calendar year are asked to submit a ranked list of up to 10 schools. Households who

13 For this reason, information on private schools is very limited. Given the lack of information on private schools and the small fraction of schools they account for, we treat private schools as part of the (exogenous) outside option in the model.

14 For example, in the 2007, over 95% of families with a 3-year old child in Barcelona participated in the application procedure.
submit their applications after the deadline (typically between April 10th and April 20th) can only be considered after all on-time applicants have been assigned. All applications are typed into a centralized system, which assigns students to schools via a Boston mechanism. The final assignment is made public and finalized between April and May, and enrollment happens at the beginning of September, when school starts. In the assignment procedure, all applicants are assigned to their first choice if there are enough seats. If there is over-demand for a school, applicants are prioritized according to the government-specified priority rules. In Catalunya, the highest priority to a particular school is the presence of a sibling in the same school, followed by living in the neighborhood that contains that school, and then by other characteristics of the family or the child. Ties are broken through a fair lottery. The assignment in every round of the procedure is final, which implies that an applicant rejected from her first-ranked school can get into her second-ranked school only if this school still has a free seat after the first round. The same rule holds for all later rounds.

In principle, a family can change schools within the public school system after the assignment. This is feasible only if the receiving school has a free seat, which is a near-zero-probability event in popular schools. The same difficulty of transferring schools persists onto the preschool-to-primary-school transition because a student has the priority to continue her primary-school education in the same school she enrolled for preschool education, and because school capacities remain the same in preschools and primary schools (which are offered in the same facilities). A family’s initial school choice continues to affect the path into secondary schools as students are given priorities to attend specific secondary schools depending on the schools they enrolled for primary-school education. On the one hand, besides the direct effect of school quality on their children’s development, families’ school choice for their 3-year-old children have long-term effects on their children’s educational path due to institutional constraints. On the other hand, the highly centralized management of public schools in Barcelona reduces the stakes families take by narrowing the differences across schools.

\footnote{See Calsamiglia and Guell (2014) for more details on the application forms and the laws underlying this procedure.}
2.3 Changes in the Definition of Neighborhoods (2007)

Before 2007, the city of Barcelona was divided into fixed non-overlapping zones; families living in a given zone had priorities for all the schools in that zone. Depending on their specific locations within a zone, families could have priorities for in-zone schools that were far away from their residence while no priority for schools that were close-by but belonged to a different zone. This is particularly true for families living on the corner of certain zones. In 2007, a family’s neighborhood is redefined as the smallest area around its residence that covered the closest 3 public and the closest 3 semi-public schools, for which the family was given residence-based priorities. The 2007 reform was announced abruptly on March 27th, 2007, before which there had been no public discussions about it. Families were informed via mail by March 30th, who had to submit their lists by April 20th.

3 Model

3.1 Primitives

There are \(J \) public schools distributed across various school zones in the city. In the following, schools refer to non-private (public, semi-public) schools unless specified otherwise. There is a continuum of households/students/parents of measure 1 (we use the words household, student and parent interchangeably). Each household submits an ordered list of schools before the official deadline, after which a centralized procedure is used to assign students according to their applications, the available capacity of each school and a priority structure. A student can either choose to attend the school she is assigned to or the outside option.

3.1.1 Schools

Each school \(j \) is endowed with a location \(l_j \) and a vector \(w_j \) of characteristics consisting of school quality, capacity, tuition and an indicator of semi-public school. A school’s

\[\text{There were over 5,300 neighborhoods under this new definition. See Calsamiglia and Guell (2014) for a detailed description of the 2007 reform.} \]

\[\text{As mentioned in the background section, almost all families participate in the application procedure. For this reason, we assume that the cost of application is zero and that all families participate. This is in contrast with the case of college application, which can involve significant monetary and non-monetary application costs.} \]
capacity lie between \((0, 1)\) hence no school can accommodate all students. The total capacity of all schools is at least 1, hence each student is guaranteed a seat in the public school system.

3.1.2 Households

A household \(i\) is endowed with characteristics \(x_i\), a home location \(l_i\), tastes for schools \(\epsilon_i = \{\epsilon_{ij}\}_j\) and a type \(T \in \{0, 1\}\) (non-strategic or strategic). Household tastes and types are unobservable private information. The fraction of strategic households varies with household characteristics and home locations, given by \(\lambda(x_i, l_i)\). Types differ only in their behaviors, which will be clear when we specify a household’s problem, but all households share the same preference parameters.

As is common in discrete choice models, the absolute level of utility is not identified, we normalize the expected value of the outside option to zero. That is, a household’s evaluation of each school is relative to its evaluation of the outside option, which may differ across households. Let \(d_{ij} = d(l_i, l_j)\) be the distance between household \(i\) and school \(j\), and \(d_i = \{d_{ij}\}_j\) be the vector of distances to all schools for \(i\). Let \(z_l\) be the school zone that contains location \(l\), household \(i\)’s utility from attending school \(j\), regardless of its type, is given by

\[
 u_{ij} = U(w_j, x_i, d_{ij}) + U_0(z_l) + \epsilon_{ij}.
\]

The net benefit from attending school \(j\) is given by \(U(w_j, x_i, d_{ij})\), a function of the school and household characteristics and home-school distance.\(^{18}\) The value \(U_0(z_l)\) is zone-specific, which captures the common preference factors that exist among households living in the same zone. The last term is \(i\)’s idiosyncratic tastes for school \(j\).

We assume the vector \(\epsilon_i \equiv \{\epsilon_{ij}\}_j \sim i.i.d. F_i(\epsilon)\).

Between application and enrollment (about 6 months), the value of the outside option is subject to a shock \(\eta_i \sim i.i.d. N(0, \sigma^2_\eta)\). For example, a parent may experience a wage shock that changes her ability to pay for the private school. This post-application shock rationalizes the fact that some households in the data chose the outside option even after being assigned to the schools of their first choice.

\(^{18}\)We assume that households have full information about school characteristics. Our data do not allow us to separate preferences from information frictions. Some studies have taken a natural or field experiment approach to shed lights on how information affects schooling choices, e.g., Hastings and Weinstein (2008) and Jensen (2010).
3.2 Priority and Assignment

In this subsection, we describe the official rules on priority scores and the assignment procedure.

3.2.1 The Priority Structure

A household i is given a priority score s_{ij} for each of the schools $j = 1, \ldots, J$, determined by household characteristics, its home location and the location of the school. Locations matter only up to whether or not the household locates within the school zone a school belongs to. Household characteristics x_i consists of two parts: demographics x_i^0 and the ID’s of the schools one’s older siblings are enrolled in. Let $sib_{ij} = 1$ if student i has a sibling enrolled in school j, s_{ij} is given by

$$s_{ij} = x_i^0 a + b_1 I \left(z_{i_j} \in z_i \right) + b_2 sib_{ij},$$

where a is the vector of official bonus points that applies to household demographics, $b_1 > 0$ is the bonus point for schools within one’s zone and b_2 is the bonus point for the school one’s sibling is enrolled in. It follows from the formula that a student can have 2, 3 or 4 levels of priority scores, depending on whether or not the school is in-zone or out-of-zone, whether or not one has sibling(s) in some in-zone and/or out-of-zone schools. See the appendix for details.

To reduce its own computational burden, the administration stipulates that a student’s priority score of her first choice carries over for all schools on her application list. For example, if a student lists a in-zone (out-of-zone) sibling school as her first choice, she carries $x_i^0 a + b_1 + b_2 \left(x_i^0 a + b_2 \right)$ for all the other schools she listed regardless of whether or not they are within her zone and whether or not she has a sibling in those schools.

3.2.2 The Assignment Procedure

Schools are gradually filled up over rounds. There are $R < J$ rounds.

Round 1: Only the first choices of the students are considered. For each school, consider the students who have listed it as their first choice and assign seats of the school to these students one at a time following their priority scores from high to low (with random lotteries as tie-breakers) until either there are no seats left or there is
no student left who has listed it as her first choice.

Round $r \in \{2, 3, \ldots, R\}$: Only the r^{th} choices of the students not previously assigned are considered. For each school with still available seats, assign the remaining seats to these students one at a time following their priority scores from high to low (with random lotteries as tie-breakers) until either there are no seats left or there is no student left who has listed it as her r^{th} choice.

The procedure terminates after any step $r \leq R$ when every student is assigned a seat at a school, or if the only students who remain unassigned listed no more than r choices. Let $p^{r}_{j}(s_{ij})$ be the probability of being admitted to school j in Round r for a student with priority score s_{ij} for school j, who listed j as the r^{th} application. The assignment procedure implies that the admissions probability is (weakly) decreasing in priority scores within each round, and is (weakly) decreasing over rounds for all priority scores. A student who remains unassigned after the procedure ends can propose a school that still has empty seat and be assigned to it.

3.3 Household Problem

We start with a household’s enrollment problem. After seeing the post-application shock η_i to its outside option and the assignment result, a household chooses the better between the school it is assigned to and the outside option. Let the expected value of being assigned to school j be v_{ij}, such that

$$v_{ij} = E_{\eta_i} \max \{u_{ij}, \eta_i\}.$$

As seen from the assignment procedure, if rejected by all schools on its list, a household can opt for a school that it prefers the most within the set of schools that still have empty seats after everyone’s applications have been considered. Label these schools as "leftover schools," which will have $p^{r}_{j}(\cdot) = 1$ for any r. Let v_{i0} be the value of being assigned to its backup school for household i,

$$v_{i0} = \max \{v_{ij} \mid p_{j}(\cdot) = 1\}.$$

In the following, we describe a household’s application problem, in which it chooses an ordered list of up to R schools. We do this separately for non-strategic and strategic households.
3.3.1 Non-Strategic Households

A non-strategic household lists schools on its application according to its true preferences \(\{v_{ij}\} \). Without further assumptions, any list of length \(n \ (1 \leq n \leq R) \) that consists of the ordered top \(n \) schools according to \(\{v_{ij}\} \) is consistent with non-strategic behavior. We impose the following extra structure: suppose household \(i \) ranks its backup school as its \(n_i^* \)-th favorite, then the length of its application list \(n_i \) is such that

\[
 n_i \begin{cases}
 \geq n_i^* & \text{if } n_i^* \leq R, \\
 = R & \text{otherwise.}
 \end{cases} \tag{2}
\]

That is, when there are still slots left on its application form, a non-strategic household will list at least up to its backup school.

Let \(A^0_i = \{a_1^0, a_2^0, \ldots, a_{n_i}^0\} \) be an application list, where \(a_r^0 \) is the ID of the \(r^{th} \)-listed school in household \(i \)'s application and \(n_i \) satisfies (2). The elements in \(A^0_i \) are given by

\[
a_1^0 = \arg \max \{v_{ij}\}_j \\
a_r^0 = \arg \max \{v_{ij}|j \neq a_{r'<r}\}_j, \text{ for } 1 < r \leq \min \{n_i^*, n_i\}.
\tag{3}
\]

Define \(A^0(x_i, \epsilon_i, l_i) \) as the set of lists that satisfy (2) and (3) for a non-strategic (Type-0) household with characteristics \(x_i \), location \(l_i \) and tastes \(\epsilon_i \). If \(n_i^* \geq R \), the set \(A^0(\cdot) \) is a singleton, and the length of the application list \(n_i = R \). If \(n_i^* < R \), all lists in the set \(A^0(\cdot) \) share the first \(n_i^* \) elements and they all imply the same allocation outcome for household \(i \).

Discussion Notice that Condition (2) requires that, instead of being totally naive, a non-strategic household know which schools will still have empty seats after the procedure ends. We have imposed this extra condition for the following reasons. First of all, the knowledge of the set of leftover schools involves far less sophistication than that of all admissions probabilities by school and by round. It is reasonable to believe that even the non-strategic households may have this (minimal) level of sophistication. Second, in order to calculate welfare, we need to predict the content of an application list at least up to the point beyond which listing any additional schools will not affect the allocation outcome. Condition (2), together with Condition (3), gives the model such a predictive power without assuming too much sophistication.
for non-strategic households.

3.3.2 Strategic Households

Strategic households are fully aware of the admissions probabilities in all rounds and take them into account when applying for schools. However, when the total number of schools J is relatively big, solving for a fully optimal ordered list of length R out of all J schools will soon become a daunting task for any household as R goes beyond 1. For example, in the case of Barcelona, J is over 300 and R is 10. Therefore, we assume that a strategic household has bounded rationality, and that it uses the following decision-making process. First, from all J schools, a strategic household i picks a smaller set of candidate schools $J_i^* \subset \{1,...,J\}$. Then, household i makes an application list out of its candidate set J_i^* to maximize its expected utility, taking into account the admissions probabilities in all rounds.

Candidate Schools We assume that in the first step of its optimization problem, a strategic household i narrows down all schools into its own candidate set (J_i^*) of size N, composed of three non-overlapping groups of schools. The first group (the favorite) consists of N_1 schools that the household prefers the most out of the ones to which it has some positive probability of being admitted. The second group (the middle ground) consists N_2 schools that are not in the first group and that generate the highest one-shot expected values, $p_j^1(s_{ij}) v_{ij}$, where the expectation is based on the first round admissions probability only. The third group (the insurance) consists N_3 schools that the household prefers the most among those that are not already included in the first two groups and that remain available after the first round and the backup school.\(^{20}\)

Optimal Lists Recall that a student’s priority score is kept constant over all rounds in Barcelona. Define the remaining value of list $A = \{a_1,...,a_R\}$ from round $r \leq R$
onwards for household i with some priority score s as

$$V^r(A, s, x_i, l_i, \epsilon_i) = p^r_{a_r}(s) v_{ia_r} + (1 - p^r_{a_r}(s)) V^{r+1}(A, s, x_i, l_i, \epsilon_i),$$

and

$$V^{R+1}(A, s, x_i, l_i, \epsilon_i) = v_{i0}.$$

An optimal list out of J^*_i for a strategic household i, denoted as $A^1_i = \{a^1_{i1}, \ldots, a^1_{iR}\}$, solves the following problem

$$\max_{A \subseteq J^*_i} V^1(A, s, x_i, l_i, \epsilon_i) \quad (4)$$

s.t. $s = s_{i01},$

where the constraint reflects the fact that a student’s priority score of her first choice carries over for all schools on her application list.

There can be multiple optimal application lists yielding the same value. Let $A^1(x_i, l_i, \epsilon_i)$ be the set of optimal lists for a strategic household. Every list in the optimal set shares are identical up to the payoff-relevant part of the list and implies the same allocation outcome. For example, consider a list $A^1 = \{a^1_1, \ldots, a^1_r; \ldots, a^1_R\}$, by the specification of $\{u_{ij}\}$, each a^1_r is generically unique if there is no school listed before it has a 100% admissions rate for the household. However, if for some $r < R$, the admissions rate for the r^{th} listed school is one, then any list that shares the same first r ordered elements is also optimal. See the appendix for other cases.

4 Estimation

4.1 Additional Structure

In order for the model to predict student welfare and allocation results, there is no need to put further structure on households’ behavior beyond Conditions (2) and (3) for the non-strategic and Condition (4) for the strategic. This implies that if a household lists a leftover school, all schools listed after it will not be informative about the household’s preferences because these later schools will not affect the household’s payoff. In order to uses the data to its full potential, we assume the following ad-
ditional structure. Consider an observed application list by household \(i \) \((\tilde{A}_i) \) of length \(n \), in which the \(r^{th} \) element is the first school that has admissions probability of 1 in the relevant round \((p^r_j(s_i) = 1) \), and the \(t^{th} \) element is the first leftover school listed \((r \leq t) \).

A1. If \(i \) is strategic, then the schools listed after \(r^{th} \) element are ranked, i.e., \(v_{ia_i}^{r+1} > ... > v_{ia_i}^n \). However, we do not impose structure on how these schools are ranked with respect to other schools, nor do we require that they belong to the candidate set \(J^*_i \).

A2. If \(i \) is non-strategic, then the schools listed after the \(t^{th} \) element are ranked, i.e., \(v_{ia_i}^{t+1} > ... > v_{ia_i}^n \). By Condition (3), the schools listed after \(a^t_i \) are ranked below any schools listed before them, but we do not make assumptions on how they compare with non-listed schools.

Let \(\Lambda_T(x_i, l_i, e_i) \) the subset of the optimal application set \((\Lambda_T(x_i, l_i, e_i)) \) for type \(T \) household that satisfy further restrictions A1 and A2.

4.2 Likelihood

The model is estimated via the simulated maximum likelihood estimation method. The estimates of the model parameters should maximize the probability of the observed application and enrollment outcomes conditional on household observables \((x_i, l_i) \), school characteristics and location \((w_j, l_j) \), and student-school assignments.\(^{22}\)

Denote the vector of model parameters as \(\Theta \equiv [\Theta_u, \Theta_T] \), where \(\Theta_u \) is the vector of parameters that govern household preferences, and \(\Theta_T \) is the vector of parameters that govern the distribution of household types. In particular, \(\Theta_u \) is composed of 1) the parameters that govern the net benefit functions \(U(\cdot) \) and \(U_0(\cdot) \) of attending schools, 2) the dispersion of household tastes for schools \(\sigma_e \), and 3) the dispersion of post-application shocks to the value of the outside option \(\sigma_\eta \).

Let \(O_i \equiv [\tilde{A}_i, \tilde{e}_i, \tilde{j}_i] \) be the observed outcomes for household \(i \), where \(\tilde{A}_i \) is the observed application list, \(\tilde{e}_i \) is the observed enrollment decision given one being assigned to school \(\tilde{j}_i \). Recall that a household can either accept the offer or choose the outside option, hence \(\tilde{e}_i = I(\text{accept offer}) \), where \(I(\cdot) \) is the indicator function.

\(^{21}\)He (2012) takes a similar approach and assumes that if a household includes on its list some schools that are worse than its outside option, the ranking of these schools reveals the household’s true preference.

\(^{22}\)Notice that given applications, student assignment is a mechanical procedure that does not depend on parameters of the model, so it does not contribute to the likelihood per se.
Conditional on being type T, the probability of observing O_i is given by

$$L_i^T(\Theta_u) = \int \left\{ I \left(A_i \in \Lambda^T(x_i, l_i, \epsilon_i; \Theta_u) \right) \times \left[\tilde{e}_i \Phi \left(\frac{u(w_j, x_i, d_{ij}, z_i, \epsilon_i; \Theta_u)}{\sigma_u} \right) + (1 - \tilde{e}_i) \left(1 - \Phi \left(\frac{u(j)}{\sigma_u} \right) \right) \right] \right\} dF(\epsilon),$$

where $\Lambda^T(x_i, l_i, \epsilon_i; \Theta_u)$ is the subset of model-predicted optimal application lists for a type-T household with (x_i, l_i, ϵ_i) as described in the previous subsection. $\Phi \left(\frac{u(j)}{\sigma_u} \right)$ is the model-predicted probability that this household will enroll in school j, which happens if only if the post-application shock to the outside option is lower than the utility of attending j.

To obtain household i’s contribution to the likelihood, we integrate over the type distribution

$$L_i(\Theta) = \lambda(x_i, l_i; \Theta_T)L_i^1(\Theta_u) + (1 - \lambda(x_i, l_i; \Theta_T))L_i^0(\Theta_u).$$

Finally, the total log likelihood of the whole sample is given by

$$\mathcal{L}(\Theta) = \sum_i \ln(L_i(\Theta)).$$

4.3 Identification

This subsection gives an overview of the identification. Discussions about the identification of specific parameters will be provided along with the estimation results. The identification relies on the following assumptions.

IA1: Household tastes ϵ are drawn from an i.i.d. single-mode distribution, with mean normalized to zero, and tastes are independent of household observables (x, l) and type (T).

IA2: At least one continuous variable in the utility function is excluded from the type distribution. Conditional on variables that enter the type distribution function, the excluded variable(s) is (are) independent of household type T.

We observe application lists with different distance-quality-risk combinations with different frequencies in the data. The model predicts that households of the same type tend to make similar application lists. Given IA1, the distributions of type-related variables will differ around the modes of the observed choices, which informs us of the
correlation between type \(T \) and these variables. In particular, in our model, household observables \((x_i, l_i)\) enter both type distribution and utility. Households share the same preferences about school characteristics and distance, regardless of their types. As such, there is no particular reason to believe that everything else being equal, the strategic type will live closer to a particular school than the non-strategic type do only for the sake of being close. However, conditional on distance, a non-strategic household may not care too much about living to the left or the right of a school, but a strategic household may be more likely to choose a particular side so as to take advantage of the priority zone structure. Therefore, we assume that home location \(l_i \) enters the type distribution only up to which school zone \(z_{l_i} \) it belongs, i.e.,

\[
\lambda(x_i, l_i) = \lambda(x_i, z_{l_i}).
\]

However, household utility depends directly on the home-school distance vector \(d_i \). Conditional on being in the same school zone, households with similar characteristics \(x \) but different home addresses still face different home-school distance vectors \(d \), as required in IA2.

Conditional on \((x, z_l)\), the variation in \(d \) induces different behaviors within the same type; and conditional on \((x, z_l, d)\), different types behave differently. In particular, although households share the same preference parameters, different types of households will behave as if they have different sensitivities to distance. For example, consider households with the same \((x, z_l)\) and a good school \(j \) out of \(z_l \), as the distance to \(j \) decreases along household addresses, more and more non-strategic households will apply to \(j \). However, the reactions will be much less obvious among the strategic households, because they take into account the risk of being rejected, which remains unchanged no matter how close \(j \) is as long as it is out of \(z_l \). The different distance-elasticity among households therefore inform us of the type distribution within \((x, z_l)\).

The identification argument does not depend on specific parametric assumptions. For example, Lewbel (2000) shows that similar models are semiparametrically identified when an IA2-like excluded variable with a large support exists. However, to make the exercise feasible, we have assumed specific functional forms. The appendix shows a formal proof of identification given these additional specifications.

The identification of our model is further facilitated by the fact that we can
partly observe household type directly from the data: there is one particular type of "mistakes" that a strategic household will never make, which is a sufficient (but not necessary) condition to spot a non-strategic household. Intuitively, if a household’s admissions status is still uncertain for all schools listed so far, and there is another school \(j \) it desires, it never pays to waste the current slot to a zero-probability school instead of listing \(j \) because the admissions probabilities decrease over rounds.\(^{23}\) The idea is formalized in the following claim and proved in the appendix.

Claim 1 An application list with the following features is sufficient but not necessary evidence that the household must be non-strategic: 1) for some \(r \)th element \(a_r \) on the list, the household faces zero admissions probability at the \(r \)th round \((p_{a_r}^r(s_i) = 0) \), and 2) it faces admissions probabilities lower than 1 for all schools listed in previous rounds \((p_{a_r}^{r'}(s_i) < 1 \text{ for all } r' < r) \), and 3) it faces a positive but lower than 100% admissions probability for the school listed in a later slot \(r'' \geq r + 1 \) \((0 < p_{a_r'}(s_i) < 1) \) and no school listed between \(a_r \) and \(a_{r''} \) admits the household with probability 1.

5 Data

Our analysis focuses on the applications among families with children that turned 3 years old in 2006 or 2007 and lived in Barcelona. For each applicant, we observe the list of schools applied for, the assignment and enrollment outcomes. We also have information on the applicant’s family background and the school(s) her siblings were enrolled in the year of her application. For each school in the public school system, we observe a measure of school quality, school capacity and the level of service fees. The final data set consists of merged data sets from five different administrative units: the Consorci d’Educacio (local authority handling the choice procedure in Barcelona), Department d’Educatio (department of education), the Consell d’Avaluacio de Catalunya (public agency in charge of evaluating the educational system), the Instituto Nacional de Estadistica (national institute of statistics) and the Institut Catala d’Estadistica (statistics institute of Catalunya).\(^{24}\)

\(^{23}\) Abdulkadiroglu, Pathak, Roth and Sonmez (2006) use a mistake similar to Feature 1) in Claim 1 to spot non-strategic households, which is to list a school over-demanded in the first round as one’s second choice.

\(^{24}\) These five different data sources were merged and anonymized by the Institut Catala d’Estadistica (IDESCAT).
5.1 Data Sources

The major subset of our data comes from the Consorci d’Educacio, in which we observe the application form, school assignment and enrollment for each applicant. An application form contains the entire list of ranked schools a family submitted. In addition, it records family information that was used to determine the priority the family had for various schools (e.g., family address, the existence of a sibling in the first-ranked school and other relevant family and child characteristics). The geocode in this data set allows us to compute a family’s distance to each school in the city.

From the Census (2000) and local register data, we obtain information on the applicant’s family background, including parental education and single-parenthood. Since information on siblings who were not enrolled in the school the family ranked first is irrelevant in the school assignment procedure, it is not available from the application data. However, such information is relevant for family’s application decisions. From Department d’Educacio, we obtained the enrollment data for children aged 3 to 18 in Catalunya. This data set is then merged with the local register, which provides us with the ID of the schools enrolled by each of the applicant’s siblings at the time of the application.

To measure the quality of schools, we use the external evaluation of students conducted by Consell d’Avaluacio de Catalunya. Since 2009, such external evaluations have been imposed on all schools in Catalunya, in which students enrolled in the last year of primary school are tested on math and language subjects. From the 2009 test results that we obtained, we calculated the average test score across subjects for each student, then use the average across students in each school as one measure of the school quality.\footnote{Following the same rule used in Spanish college admissions, we use unweighted average of scores across subjects for each student.} Finally, to obtain information on the fees charged by semi-public schools (public schools are free to attend), we use the survey data from the Instituto Nacional de Estadistica.

5.2 Admissions Probabilities and Sample Selection

It is well-known that the Boston mechanism can give rise to multiple equilibria, which can greatly complicate the estimation of an equilibrium model.\footnote{He (2012) did not detect multiple equilibria in his simulations and hence estimated the equilibrium model assuming uniqueness.} However, assum-
ing each household is a small player that takes the admissions probabilities as given, we can recover all the model parameters by estimating an individual decision model. This is made possible because the assignment procedure is mechanical and because we observe the applications and assignment results for all participating families, which we use to calculate the admissions probabilities. Due to the fact that the assignment to over-demanded schools depends on random draws to break the tie between applicants of the same priority, we obtain the admissions probabilities as follows. Taking the observed applications as given, we take random draws for all applicants and simulate the assignment results, which yields the round-school-priority-score-specific admissions probabilities \(p^r_j (s) \) for the given set of random draws. We obtain the admissions probabilities by repeating the process 1,000 times and then integrating over the results. The simulated admissions probabilities are treated as the ones that the households expected when they apply, i.e., before the realization of the tie-breaking random draws.

In 2006, 11,871 Barcelona households participated in the application for schools in the Barcelona public school system. We drop 3,152 observations whose home location information cannot be consistently matched with the GIS (geographic information system) data. We exclude 191 families whose children have special (physical or mental) needs or who submitted applications after the deadline, the latter were ineligible for assignment in the regular procedure. We drop 31 households whose applications, assignment and/or enrollment outcomes are inconsistent with the official rule, e.g., students being assigned to over-demanded schools they did not apply for. Finally, we delete observations missing critical information such as parental education and the enrollment information of the applicant’s older sibling(s).\(^{27}\) The final sample size for estimation is 6,836.

\(^{27}\)Our model does distinguish between high-school education and college education. Therefore, the observations excluded from the estimation sample include 748 parents who reported their education levels as "high school or above." Unconditional on education, these observations are not random, but conditional on education, they are assumed to be missing at random and are dropped from the estimation. In policy simulations, however, we do include this subsample and simulate their application behaviors in order to be able to conduct the city-wise assignment under alternative mechanisms. We interpolate the probability of each of these 748 households as being high school or college educated by comparing them with those who reported exactly high-school education or college education. We estimate the probabilities via a flexible function of all the other observable characteristics, such as gender, residential area, age, number of children etc. The model fit for this subsample is as good as that for the estimation sample, available on request.
5.3 Summary Statistics

There were 158 public schools and 159 semi-public schools in our sample period. Table 1 summarizes school characteristics separately for the two groups of schools. The first row summarizes school quality as measured by the average test scores of students in each school.28 The average quality of public schools is 7.4 with a standard deviation of 0.8. Semi-public schools have higher average quality of 8.0 and a smaller dispersion of 0.5. Although public schools are free to attend, semi-public schools charge on average 1,280 euros per year with a standard deviation of 570 euros. The average capacity for the incoming 3-year-old students in public schools is 1.4 classes, as compared to 1.8 in semi-public schools.

<table>
<thead>
<tr>
<th>Table 1 School Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Quality</td>
</tr>
<tr>
<td>Fees (100 Euros)</td>
</tr>
<tr>
<td># Classes</td>
</tr>
<tr>
<td>Observations</td>
</tr>
</tbody>
</table>

Table 2 summarizes the characteristics of the household sample. Among all households, about 30% parents had less than high school education and about 40% had college education.29 About 15.8% of the sample were single parents. Over 42% of applicants had at least one older sibling enrolled in some preschool or primary school in 2006, almost all of these older siblings were enrolled in the Barcelona public school system (40.7% out of 42.2%). Depending on their home locations, the numbers of schools to which households had priority to were different, so was the average quality of these schools. On average, a household had priority to 22 schools in 2006 with a standard deviation of almost 8 schools. The average quality of schools within one’s priority zone was 7.8 and the cross zone dispersion was 0.3.

28We measure test scores on a scale from 0 to 10, distance in 100 meters and tuition in 100 euros. 29Following the literature on child development, we use mother’s education as the definition of parental education if the mother is present in the household, otherwise, we use the father’s education.
Table 2 Household Characteristics

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parental Edu < HS</td>
<td>29.8%</td>
</tr>
<tr>
<td>Parental Edu = HS</td>
<td>30.4%</td>
</tr>
<tr>
<td>Parental Edu ≥ College</td>
<td>39.8%</td>
</tr>
<tr>
<td>Single-Parent</td>
<td>15.8%</td>
</tr>
<tr>
<td>Have school-age older sibling(s)</td>
<td>42.2%</td>
</tr>
<tr>
<td># Schools in Zone</td>
<td>22.3 (7.9)</td>
</tr>
<tr>
<td>Average school quality in zone</td>
<td>7.8 (0.3)</td>
</tr>
<tr>
<td>Observations</td>
<td>6,836</td>
</tr>
</tbody>
</table>

*aParental Edu: mother’s edu if she is present, o/w father’s edu.

Table 3 shows the number of schools households listed on their application forms. Households were allowed to list up to 10 schools, but most of households listed no more than 3 schools, with 47% of households listing only one school. Across different educational groups, parents with lower-than-high-school education were more likely to have a shorter list, while parents with exact high school education tended to list more schools than the others. Single parents also tended to list more schools compared to both-parent households.

Table 3 Number of Schools Listed (%)

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4 or more</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>46.9</td>
<td>12.4</td>
<td>16.9</td>
<td>23.8</td>
</tr>
<tr>
<td>Parental Edu < HS</td>
<td>49.8</td>
<td>15.0</td>
<td>19.5</td>
<td>15.7</td>
</tr>
<tr>
<td>Parental Edu = HS</td>
<td>43.4</td>
<td>12.1</td>
<td>18.4</td>
<td>26.2</td>
</tr>
<tr>
<td>Parental Edu ≥ College</td>
<td>47.4</td>
<td>10.6</td>
<td>13.9</td>
<td>20.1</td>
</tr>
<tr>
<td>Single-Parent</td>
<td>43.3</td>
<td>14.7</td>
<td>16.8</td>
<td>25.2</td>
</tr>
</tbody>
</table>

Table 4 shows the round at which households were assigned. By definition, a household was assigned to its r^{th} listed school if it was assigned in round r; and remained unassigned if it failed to get in any of its listed schools. Ninety three percent of households were assigned in the first round; 2.8% were assigned in the second round and 2.7% were unassigned. Across educational groups, college-educated parents were most likely to be assigned to their first choices (93.7%), followed by the lowest educational group. High-school educated parents were the least likely to be assigned to their first choice and to be assigned at all. Single parents were more likely to be assigned to their first choice compared to their counterpart.
Given that most households were assigned to their first choices, Table 5 summarizes the characteristics of the top-listed schools. For all students, the average quality of the top-listed schools was 7.9. The home-school distance was about 710 meters. The distance-quality trade-offs seem to differ across educational groups: as parental education goes up, the quality of top-listed schools increases while the distance decreases. Single parents were more likely to top-list a school with higher quality yet longer distance, compared to an average household.

Finally, Table 6 lists the fraction of all students, assigned or unassigned, who were enrolled in the public school system (recall that a household can propose a school with available seat and be assigned to it after the regular admissions if the household remains unassigned to any of its listed schools). Overall, 97% of applicants were enrolled in the public school system. Applicants with college-educated parents and/or single parents were less likely to enroll. The last row shows that 2.2% of households chose not to enroll even though they had been assigned to their first choice. The ex-post shocks introduced in the model are meant to rationalize such behaviors.
Table 6 Enrollment in Public System (%)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>96.7</td>
</tr>
<tr>
<td>Parental Edu $<$ HS</td>
<td>97.0</td>
</tr>
<tr>
<td>Parental Edu $=$ HS</td>
<td>97.1</td>
</tr>
<tr>
<td>Parental Edu \geq College</td>
<td>96.3</td>
</tr>
<tr>
<td>Single-Parent</td>
<td>96.1</td>
</tr>
<tr>
<td>Assigned in Round 1</td>
<td>97.8</td>
</tr>
</tbody>
</table>

6 Parameter Estimates and Model Fit

6.1 Parameter Estimates

Table 7 presents the estimated parameters governing household preferences, with standard errors shown in parentheses. Since we normalize the linear term of households’ preferences for distance to be -1, household utilities are measured in the distance unit, i.e., 100 meters. Starting from the left panel, the constant term refers to the base group, i.e., high-school educated both-parent households. High-school educated parents value schools within the public school system more than other educational groups, especially the college-educated group. One explanation is that college-educated parents are more likely to be able to afford a costly outside option (a private school). Single parents also tend to value public schools less than their counterpart. The next row shows that it is especially attractive for a household to send the child to the same school where her older sibling was enrolled in. These parameter estimates are consistent with the observed behaviors. For example, Table 5 and Table 6 show that although college-educated parents and single parents were more likely to be assigned to their top choices, they were less likely to enroll their children in the public school system. It is also observed that most households with more than one child sent the younger child to her sibling’s school.

We allow the characteristics of one’s school zone, e.g., the number and the average quality of schools within the zone, to affect one’s utility. However, in a likelihood ratio test, we cannot reject that conditional on household characteristics, zone characteristics do not matter. Therefore, we choose the more parsimonious specification as presented below.
Table 7 Preference Parameters (100m)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Coefficient (SE)</th>
<th>Coefficient (SE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>3478.9 (122.4)</td>
<td>0.01 (1.87)</td>
</tr>
<tr>
<td>Single Parent</td>
<td>-261.9 (172.6)</td>
<td>6.4 (0.4)</td>
</tr>
<tr>
<td>Education < HS</td>
<td>-57.7 (471.3)</td>
<td>1.6 (0.2)</td>
</tr>
<tr>
<td>Education > HS</td>
<td>-405.6 (150.7)</td>
<td>7.8 (3.1)</td>
</tr>
<tr>
<td>Sibling School</td>
<td>1618.7 (194.5)</td>
<td>20.6 (1.3)</td>
</tr>
<tr>
<td>Semi-Public School</td>
<td>37.6 (0.3)</td>
<td>41.6 (0.2)</td>
</tr>
<tr>
<td>Fee*I(Edu < HS)</td>
<td>-5.1 (0.04)</td>
<td>-10.6 (0.2)</td>
</tr>
<tr>
<td>Fee*I(Edu = HS)</td>
<td>-3.8 (0.01)</td>
<td>Distance (100m)</td>
</tr>
<tr>
<td>Fee*I(Edu > HS)</td>
<td>-3.6 (0.01)</td>
<td>Distance^2</td>
</tr>
<tr>
<td>Fee^2</td>
<td>0.12 (0.001)</td>
<td>Distance>5 (100m)</td>
</tr>
<tr>
<td># Classes= 2</td>
<td>22.0 (0.1)</td>
<td>-46.3 (0.1)</td>
</tr>
<tr>
<td># Classes= 3</td>
<td>40.7 (0.4)</td>
<td>53.8 (0.1)</td>
</tr>
<tr>
<td># Classes> 3</td>
<td>54.2 (0.4)</td>
<td>2131.7 (40.6)</td>
</tr>
</tbody>
</table>

q^b(q^g) is the quality of the school at the 75th (25th) percentile.

The sixth row on the left panel of Table 7 shows that holding everything else constant, semi-public schools are more preferable to public schools, which may reflect the fact parents value the more flexible management and curriculum in semi-public schools. The next four rows show the effect of school fees. Price sensitivities decrease with education levels; and the cost of fees is strongly concave. In particular, the cost of fees peaks around 1,500 (1,600) euros per year for the college (high-school) educated parents, which is around the 75th percentile of the distribution of fees charged by semi-public schools. For the lowest-education group, the cost peaks around 2,100 euros, which is the 95th percentile of the distribution of fees charged by semi-public schools. The finding that very high-cost schools are desirable reflects the fact that a large part of the fees were charged for additional services provided by semi-public schools, which apparently were valued by parents. Without further information on the services provided by schools, our preference parameters on fees capture the effects of monetary costs net of the benefits associated with these fees. The last three rows on the left panel show households’ additional preferences for schools with capacities of more than one first-year class. Consistent with the fact that larger schools tend to have more resources and lower closing-down probabilities, our parameter estimates show that households prefer schools with larger capacity.
The right panel of Table 7 shows the trade-offs between quality \((q)\) and distance. There are three sets of quality parameters: 1) education-group-specific linear impacts of quality, 2) education-group-specific square terms on school quality beyond the 75\(^{th}\) percentile of the quality distribution \((q^g)\), and 3) a square term on school quality below the 25\(^{th}\) percentile \((q^b)\). Except for the high-school-educated parents, the linear effects of school quality are small, especially for the lowest-educational group, for whom the linear term is almost zero. Households do, however, value the top schools. As shown in the 4th to 6th row, the preferences for schools that are ranked at the higher end of the quality distribution are strongly convex, especially for the higher educated groups. The next row shows that households also have a strong aversion against schools at the lower end of the quality distribution. In sum, although households may not care too much about the quality differences across schools in the middle of the quality distribution, they do care much more about the very good schools and the very bad ones. The next four rows show preferences on distances. The linear preference parameter on distance is normalized to -1. The cost of distance is convex with the square term being 0.05. In addition, we allow two jumps in the cost of distances. The first jump is set at 500 meters, which is meant to capture an easy-to-walk distance even for the 3-year olds. Another jump is at the 1 kilometer threshold, which is a long yet perhaps still manageable walking distance. As households may have to rely on some other transportation methods when a school is beyond walking distances, it is not surprising to see that the cost of distance jumps significantly at the thresholds, by about 4.6 kilometers at the first threshold and by another 2.3 kilometers at the second. Our findings that parents of different education levels differ in their views of the tradeoffs among quality, fees and distance are consistent with those in the literature.\(^{31}\) Finally, the last two rows on the right panel show, respectively, the dispersion of household preferences across schools and that of post-application shocks. The latter is necessary to rationalize the fact that some households gave up their first choices after being assigned. In addition, households take expectations over these ex-post shocks when applying, thus application provides another benefit, i.e., an option value.

Table 8 presents the estimated parameters governing the probability that a household is strategic. Single parents are slightly less likely to be strategic. Compared to high-school-educated parents, those with lower or higher education levels are more

\(^{31}\)For example, Burgess et al (2009) and Hastings, Kane and Staiger (2008).
likely to be strategic. We do not find that strategic households are more likely to live in zones with priority access to more schools, and in fact, the coefficient is slightly negative. However, we do find that strategic households are more likely to live in zones with higher average school quality. Although not precisely estimated, households with older children are more likely to be strategic.

<table>
<thead>
<tr>
<th>Table 8 Type Distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
</tr>
<tr>
<td>Single Parent</td>
</tr>
<tr>
<td>Education < HS</td>
</tr>
<tr>
<td>Education > HS</td>
</tr>
<tr>
<td>No. schools in zone</td>
</tr>
<tr>
<td>Average school quality</td>
</tr>
<tr>
<td>Have an older sibling</td>
</tr>
</tbody>
</table>

Based on the estimates in Table 8, Table 9 shows the simulated type distribution in our sample. The left panel shows that 96% of all households were strategic, i.e., very few households applied without considering the odds of being admitted. The next 5 rows shows the fraction of strategic households for each of the subgroups of the sample. Across educational groups, the high-school educated households were the least likely to be strategic. Households with both parents and those with older children were both more likely to be strategic. The upper-right panel of Table 9 shows the average characteristics of the zones lived in by different types of households. On average, strategic (non-strategic) households lived in zones with 22.3 (23.1) schools and the average quality of these schools was 7.9 (7.8).

<table>
<thead>
<tr>
<th>Table 9 Strategic vs. Non-Strategic Type: Simulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Parental Edu < HS</td>
</tr>
<tr>
<td>Parental Edu = HS</td>
</tr>
<tr>
<td>Parental Edu ≥College</td>
</tr>
<tr>
<td>Single-Parent</td>
</tr>
<tr>
<td>Have an older sibling</td>
</tr>
</tbody>
</table>
6.2 Model Fits

The 2007 re-definition of priority zones abruptly changed the school-household-specific priorities. For example, the number of schools to which a household had priority to became 7.0 on average with a standard deviation of 1.5 in 2007, as compared to the 22.3 (7.9) figure in 2006. More importantly, the priority schools became those that surrounded each home location, which also changed the risk-quality-distance trade-offs faced by households. In this section, we show the model fits for both the 2006 and the 2007 samples. To simulate the 2007 outcomes, we first calculate the admissions probabilities in 2007 via the same procedure as we do for the year 2006, and use the 2007 sample of 7,437 households to conduct an out-of-sample validation. To the extent that the change came as a surprise to households, it is reasonable to believe households had been unable to reallocate before submitting their applications in 2007. As such, we simulate the distribution of 2007 household types using the characteristics of their residential zones according to the 2006 definition.

Considered as the most informative test of the model, the first two rows of Table 10 explore the changes in the definition of priority zones. The 2007 reform led to situations where some schools were in the priority zone for a household in one year but not in the other, which would affect the behavior of a strategic household. As shown in the first row of Table 10, in 2006, 24% of the households in our sample top-listed a school that was in their priority zone by the 2006 definition but not by the 2007 definition. In 2007, the fraction of households that top listed these schools dropped to 12%. On the other hand, the second row of Table 10 shows that the fraction of households that top-listed schools in their priority zone only by the 2007 definition but not by the 2006 definition increased from 3% to 12% over the two years. The model is able to replicate such behaviors and predicts the changes as being from 22% to 15% for the first case, and from 5.7% to 11.2% for the second case. The next 3 rows of Table 10 show that the model fits the data well in terms of the characteristics of the top-listed schools, including average quality, distances and fees. In particular,

32 The appendix shows the fits for subsamples conditional on education and single-parenthood.
33 In 2007, 12,335 Barcelona households participated. We follow the same sample selection rule as that for the 2006 sample. In particular, the 7,437 households in 2007 do not include the 998 parents who reported "high school or above" as their education levels. We interpolate the probability of being college-educated for these parents and include them in the counterfactual policy experiments.
34 Calsamiglia and Güell (2014) use this change to show that the observed application behavior was driven largely by admissions priorities.
the distance of the top-listed school went down from 7.1 to 6.6 in the data between the two years, as priority schools became those surrounding one’s home location. The model-predicted change in distance is from 7.4 to 6.9.35

Table 10 Top-Listed Schools

<table>
<thead>
<tr>
<th></th>
<th>2006 Data</th>
<th>2006 Model</th>
<th>2007 Data</th>
<th>2007 Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>In Zone 06 Only (%)</td>
<td>24.1</td>
<td>22.0</td>
<td>12.0</td>
<td>15.1</td>
</tr>
<tr>
<td>In Zone 07 Only (%)</td>
<td>3.0</td>
<td>5.7</td>
<td>12.0</td>
<td>11.2</td>
</tr>
<tr>
<td>Quality</td>
<td>7.9</td>
<td>7.9</td>
<td>7.9</td>
<td>7.9</td>
</tr>
<tr>
<td>Distance (100m)</td>
<td>7.1</td>
<td>7.4</td>
<td>6.6</td>
<td>6.9</td>
</tr>
<tr>
<td>Fee (100 Euros)</td>
<td>8.1</td>
<td>8.1</td>
<td>7.9</td>
<td>8.0</td>
</tr>
</tbody>
</table>

As mentioned in the model section, there can be multiple lists that are payoff-equivalent and imply the same allocation results. All these lists have identical ordered elements that are allocation-relevant, which is what our model can explain. For example, consider a list of length 4, the third element of which was a leftover school. Our model is designed to replicate the first three elements of that list, not how many schools to be listed beyond that point. Table 11 presents the model fit for the length of the allocation-relevant part of household application lists. In both years, about 86% of households’ lists contained only one allocation-relevant school and fewer than 3% of households had more than 2 relevant schools on their lists, which is not surprising given that most households were assigned in the first round. The model-predicted distribution of the list length lies slightly to the right of the data distribution for 2006. In 2007, the model slightly underpredicts the fraction of lists that were of length 2.

Table 11 Relevant List Length (%)

<table>
<thead>
<tr>
<th></th>
<th>2006</th>
<th>2006</th>
<th>2007</th>
<th>2007</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Data</td>
<td>Model</td>
<td>Data</td>
<td>Model</td>
</tr>
<tr>
<td>1</td>
<td>85.8</td>
<td>83.2</td>
<td>86.1</td>
<td>86.9</td>
</tr>
<tr>
<td>2</td>
<td>11.5</td>
<td>12.3</td>
<td>11.7</td>
<td>9.9</td>
</tr>
<tr>
<td>≥ 3</td>
<td>2.7</td>
<td>4.5</td>
<td>2.2</td>
<td>3.0</td>
</tr>
</tbody>
</table>

Table 12 shows the rounds at which households were assigned. The model slightly over-predicts the fraction of households assigned in the first round. Table 13 shows

35Model fits for subgroups of households conditional on demographics are shown in the appendix.
that the model closely replicates the enrollment rate within the public school system. In particular, with the ex-post shocks, the model replicates the non-enrollment behavior by households who were assigned to their first choice.

Table 12 Assignment Round (%)

<table>
<thead>
<tr>
<th></th>
<th>2006 Data</th>
<th>2006 Model</th>
<th>2007 Data</th>
<th>2007 Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>93.0</td>
<td>94.3</td>
<td>92.0</td>
<td>94.5</td>
</tr>
<tr>
<td>2</td>
<td>2.8</td>
<td>2.3</td>
<td>3.1</td>
<td>2.0</td>
</tr>
<tr>
<td>≥ 3</td>
<td>1.5</td>
<td>0.2</td>
<td>1.8</td>
<td>0.4</td>
</tr>
<tr>
<td>Unassigned</td>
<td>2.7</td>
<td>3.2</td>
<td>3.1</td>
<td>3.1</td>
</tr>
</tbody>
</table>

Table 13 Enrollment in the Public System (%)

<table>
<thead>
<tr>
<th></th>
<th>2006 Data</th>
<th>2006 Model</th>
<th>2007 Data</th>
<th>2007 Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>96.7</td>
<td>96.5</td>
<td>97.6</td>
<td>96.5</td>
</tr>
<tr>
<td>Assigned in Round 1</td>
<td>97.8</td>
<td>96.7</td>
<td>98.3</td>
<td>97.1</td>
</tr>
</tbody>
</table>

7 Policy Evaluations

Using the estimated model, we conduct two sets of policy evaluations. The first compares the performance of two counterfactual mechanisms with that of the current Boston mechanism. The second assesses the impacts of the 2007 reform on household welfare.

7.1 Boston vs. GS vs. TTC

The first set of simulations quantifies the effects of changing the current Boston mechanism (BM) into two of its alternatives, the Gale-Shapley deferred acceptance mechanism (GS) and the top trading cycle mechanism (TTC). Before presenting the

36 All simulations include the interpolated sample, as mentioned in footnotes 27 and 33. All simulations use the school-household-specific priority scores given by (??), as they were defined by the official rules in the relevant year.

37 Notice that all allocation mechanisms we consider use random lotteries to rank students with the same priority score. As such, for each experiment we simulate the overall allocation procedure and obtain the outcomes for all students for a given set of random lotteries. We repeat this process many times to obtain the expected (average) outcomes for each simulated student.
results, we first briefly describe these two mechanisms, as in Abdulkadiroğlu and Sönmez (2003).

7.1.1 The GS and TTC Algorithms

The GS algorithm assigns students as follows.

Round 1: Each school j tentatively assigns its seats to students who top-listed it, one at a time following their priority order. If school j is over-demanded, lower-ranked applicants are rejected.

In general, at Round r: Each school j considers the students it has been holding, together with students who were rejected in the previous round but listed j as their r^{th} choice. Seats in school j are tentatively assigned to these students, one at a time following their priority order. If school j is over-demanded, lower-ranked applicants are rejected.

The algorithm terminates when no student is rejected and each student is assigned her final tentative assignment.

The TTC algorithm assigns students as follows.

Round 1: Assign a counter for each school which keeps track of how many seats are still available at the school, initially set to equal the capacities of the schools. Each school points to the student who has the highest priority for the school. Each student points to her favorite school under her announced preferences. This will create ordered lists of distinct schools (s) and distinct students (i): $(s_1, i_1, s_2, i_2, \ldots)$, where s_1 points at i_1, i_1 points at s_2, and s_2 points at i_2, etc. At least one cycle will be formed, where i_k points at s_1. Every student in a cycle is assigned a seat at the school she points to and is removed. The counter of each school in a cycle is reduced by one and if it reduces to zero, the school is also removed. Counters of all other schools stay put.

In general, at Round r: Each remaining school points to the student with highest priority among the remaining students and each remaining student points to her favorite school among the remaining schools. Every student in a cycle is assigned a seat at the school that she points to and is removed. The counter of each school in a cycle is reduced by one and if it reduces to zero the school is also removed. Counters of all other schools stay put.

The algorithm terminates when all students are assigned a seat.
7.1.2 Welfare Comparison

An important property that is common to both the GS and the TTC mechanisms, but absent under BM, is strategy proofness, i.e., it is a weakly dominant strategy for all households, strategic or not, to list schools according to their true preferences. As such, we simulate each household’s application list according to their true preferences and assign them using GS and then using TTC. We compare the results from these two counterfactual mechanisms with those from the baseline. We present our results under the more recent, i.e., the 2007, priority zone structure.

The first column of Table 14 shows the average welfare and the standard deviations (in parentheses) under the baseline (BM), where the welfare represents households’ evaluations of their assignment outcomes relative to their outside options and is measured in units of 100 meters. Overall, the average household welfare under BM is 4,146 with a standard deviation of 752. Strategic households have lower welfare, relative to their outside option, than non-strategic households. The next three rows show that high-school parents value the public school system the most (4,308), while college-educated parents have the least to gain from the public school system relative to their outside option (4,022).

The second column of Table 14 compares BM with GS. Changing BM into GS decreases the average welfare by 2.7, equivalent to increasing the home-school distance by 270 meters, with a standard deviation of 2.35 kilometers. Both strategic and non-strategic households lose on average, and the former lose less than the latter (2.6 vs. 5.5). Across educational groups, the sign of welfare changes is the same and the loss decreases with education level. The desirable properties of the GS, including strategy proofness, does come at a loss for all groups of households in Barcelona, as defined by strategic sophistication or education levels. Our finding that GS decreases welfare for both strategic and non-strategic households is consistent with some recent theoretical work, for example, by Abdulkadiroğlu, Che, and Yasuda (2011).

\[38\] GS eliminates justified envy, in that there is no unmatched student-school pair \((i, s)\) where student \(i\) prefers school \(s\) to her assignment and she has higher priority than some other student who is assigned a seat at school \(s\). However, GS is not Pareto efficient. TTC is efficient but does not eliminate justified envy.

\[39\] Notice that to simulate GS and TTC, it is sufficient to know household preferences. However, to compare GS or TTC with the baseline (Boston) mechanism, one needs to know the distribution of household strategic types.

\[40\] The 2006 results are similar, available on request.

\[41\] Our finding differs from He (2012), who, assuming that all households are equally likely to be
The last column of Table 14 compares BM with TTC. Changing BM into TTC increases welfare by 1.4, equivalent to decreasing the home-school distance by 140 meters, with a standard deviation of 3.32 kilometers. As such, TTC proves to be the most efficient among all three alternatives. Moreover, all groups gain on average. The average welfare among strategic households increases by 1.4, yet that among non-strategic households increases only by 0.1. The lowest education group, which is the biggest loser under GS, is the biggest winner under TTC.

<table>
<thead>
<tr>
<th>%</th>
<th>Boston (Baseline)</th>
<th>GS-Boston</th>
<th>TTC-Boston</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>4,146 (752)</td>
<td>-2.7 (23.5)</td>
<td>1.4 (33.2)</td>
</tr>
<tr>
<td>Strategic</td>
<td>4,145 (753)</td>
<td>-2.6 (23.4)</td>
<td>1.4 (32.8)</td>
</tr>
<tr>
<td>Non-strategic</td>
<td>4,173 (752)</td>
<td>-5.5 (27.4)</td>
<td>0.1 (40.4)</td>
</tr>
<tr>
<td>Edu < HS</td>
<td>4,141 (722)</td>
<td>-4.5 (22.4)</td>
<td>1.9 (24.9)</td>
</tr>
<tr>
<td>Edu = HS</td>
<td>4,308 (736)</td>
<td>-2.6 (26.2)</td>
<td>1.4 (36.3)</td>
</tr>
<tr>
<td>Edu ≥ College</td>
<td>4,022 (760)</td>
<td>-1.6 (22.0)</td>
<td>1.1 (35.4)</td>
</tr>
</tbody>
</table>

We next investigate the changes by distinguishing winners and losers. Table 15 focuses on the change from BM to GS. The first three columns show the fractions of winners, losers and those unaffected (neither); and the next two columns show the gains among the winners and the losses among the losers. Fewer than 10% of households benefit from the change from BM to GS, over 28% lose, while 62% are unaffected. However, the average gains for winners is worth 3.5 kilometers, higher than the 2.1-kilometer average loss for the losers. Qualitatively, the results are consistent across all groups in terms of the fraction of winners and losers, and in that the average gains are larger than the average losses. Quantitatively, strategic households, relative to non-strategic households, are more likely to win or be unaffected and less likely to lose. When impacted, the changes in welfare for the strategic are smaller than those for the non-strategic, with smaller gains and smaller losses. Across educational groups, the least educated group is the least likely to win (8.5%) and the most likely to lose (31.3%). High-school educated households are the most likely to win. College-educated households are the least likely to lose and most likely to be unaffected.

strategic, finds that a change from BM to GS will hurt the strategic households while marginally benefits non-strategic households in Beijing.
Table 15 Winners and Losers: Boston to GS (%)

<table>
<thead>
<tr>
<th>% Gains and Losses (100m)</th>
<th>Winner</th>
<th>Loser</th>
<th>Neither</th>
<th>Winner</th>
<th>Loser</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>9.5</td>
<td>28.5</td>
<td>62.0</td>
<td>35.3 (45.0)</td>
<td>-21.3 (20.5)</td>
</tr>
<tr>
<td>Strategic</td>
<td>9.6</td>
<td>28.2</td>
<td>62.3</td>
<td>35.0 (44.9)</td>
<td>-21.0 (20.3)</td>
</tr>
<tr>
<td>Non-strategic</td>
<td>8.6</td>
<td>35.4</td>
<td>56.0</td>
<td>43.2 (46.6)</td>
<td>-26.0 (23.4)</td>
</tr>
<tr>
<td>Edu < HS</td>
<td>8.5</td>
<td>31.3</td>
<td>60.2</td>
<td>31.0 (39.0)</td>
<td>-22.9 (21.8)</td>
</tr>
<tr>
<td>Edu = HS</td>
<td>10.9</td>
<td>31.2</td>
<td>57.9</td>
<td>38.4 (48.2)</td>
<td>-21.7 (20.6)</td>
</tr>
<tr>
<td>Edu ≥ College</td>
<td>9.2</td>
<td>24.4</td>
<td>66.4</td>
<td>35.1 (45.2)</td>
<td>-19.6 (19.2)</td>
</tr>
</tbody>
</table>

Parallel to Table 15, Table 16 shows the change from BM to TTC. Like the previous case, over 60% of households are unaffected. However, a change from BM to TTC generates more winners (20.4%) than losers (18.9%). The average gain (3.07 kilometers) is larger than the average loss (2.57 kilometers). Although they are almost as likely as strategic households to win (about 20%), non-strategic households are more likely to lose (22% vs. 19%). Like the case in Table 15, high-school educated households are the most likely to win, but unlike the previous case, they become the most likely to lose as well. The college-educated group is the least likely to win or to lose.

Table 16 Winners and Losers: Boston to TTC (%)

<table>
<thead>
<tr>
<th>% Gains and Losses (100m)</th>
<th>Winner</th>
<th>Loser</th>
<th>Neither</th>
<th>Winner</th>
<th>Loser</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>20.4</td>
<td>18.9</td>
<td>60.6</td>
<td>30.7 (40.8)</td>
<td>-25.7 (48.6)</td>
</tr>
<tr>
<td>Strategic</td>
<td>20.5</td>
<td>18.8</td>
<td>60.7</td>
<td>30.5 (40.7)</td>
<td>-25.5 (47.9)</td>
</tr>
<tr>
<td>Non-strategic</td>
<td>19.7</td>
<td>22.0</td>
<td>58.3</td>
<td>34.5 (43.1)</td>
<td>-30.4 (61.1)</td>
</tr>
<tr>
<td>Edu < HS</td>
<td>20.9</td>
<td>18.1</td>
<td>61.0</td>
<td>27.4 (35.5)</td>
<td>-21.3 (25.7)</td>
</tr>
<tr>
<td>Edu = HS</td>
<td>22.5</td>
<td>21.0</td>
<td>56.5</td>
<td>33.0 (43.6)</td>
<td>-28.8 (47.4)</td>
</tr>
<tr>
<td>Edu ≥ College</td>
<td>18.5</td>
<td>17.8</td>
<td>63.7</td>
<td>30.9 (41.4)</td>
<td>-25.8 (59.9)</td>
</tr>
</tbody>
</table>

A household’s welfare can be significantly affected by the school quality within its zone not only because of the quality-distance trade-off, but also because of the quality-risk trade-off created by the priority structure.42 For example, in an OLS

42There is an important literature capturing the value of school quality through housing price variation, as reviewed in Black and Machin (2010) and in Gibbons and Machin (2008).
regression of welfare under BM on household characteristics and zone quality, a one-point increase in zone quality is associated with a 5.8 improvement in welfare. For equity concerns, a replacement of BM will be more desirable if it is more likely to benefit those living in poor-quality zones. Table 17 tests whether or not each of the counterfactual reforms meets this goal by showing the zone quality among winners and losers from each reform. From BM to GS, the winners are those who live in better zones than the losers. Therefore, a change from BM to GS increases the dependence of welfare on zone quality, which is against the goal of equity across zones. From BM to TTC, the average zone quality is similar across winners and losers, which implies that such a reform is unlikely to affect cross-zone inequality as compared to BM.

Table 17 Zone Quality: Winners vs. Losers

<table>
<thead>
<tr>
<th></th>
<th>BM to GS</th>
<th></th>
<th>BM to TTC</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Winner</td>
<td>Loser</td>
<td>Winner</td>
<td>Loser</td>
</tr>
<tr>
<td>All</td>
<td>7.75</td>
<td>7.65</td>
<td>7.70</td>
<td>7.71</td>
</tr>
<tr>
<td>Edu < HS</td>
<td>7.57</td>
<td>7.48</td>
<td>7.52</td>
<td>7.51</td>
</tr>
<tr>
<td>Edu = HS</td>
<td>7.72</td>
<td>7.65</td>
<td>7.69</td>
<td>7.69</td>
</tr>
<tr>
<td>Edu ≥ College</td>
<td>7.88</td>
<td>7.80</td>
<td>7.84</td>
<td>7.85</td>
</tr>
</tbody>
</table>

7.1.3 School Assignment

The next 3 tables compare the assignment outcomes across mechanisms. As the basis for comparison, Table 18 shows characteristics of the schools households are assigned to under the current Boston mechanism. More educated households are assigned to schools with higher quality, longer distance and higher fees. Table 19 shows the changes to Table 18 when BM is replaced by GS. School quality increases slightly for all groups of households by similar amount of around 0.006. A non-zero average change in quality is possible because there are more school seats than students city-wise.

43 Household characteristics that are controlled for include parental education, single-parenthood, strategic type, whether or not one has an older sibling.

44 Under BM, a risk-taking poor-zone household only needs to compete with other households who top-listed the same school, since the assignment is final at each round. Under GS, the same poor-zone household has to compete not only with those who have the same favorite school but also with those who are unable to get their favorite schools, because the assignment in each round is only temporary. Under TTC, households are initially assigned to some in-zone school, but the final assignment depends on the formation of a trading cycle. One’s ability to trade does not depend on her priority for the receiving school. Therefore, who wins and who loses from the change of BM into TTC depends much less on the quality of one’s zone.

45 A non-zero average change in quality is possible because there are more school seats than students city-wise.
reduces by about 30 meters for an average household, which is assigned to a less costly school with average fees lowered by 20 euros. The changes are heterogenous across educational groups. The least-educated group sees the smallest deduction in distance, while an increase in fees by 50 euros on average. In contrast, the highest-educated group sees the smallest increase in quality and biggest deduction in fees. Our parameter estimates suggest that on average higher educated households values quality more in the trade-offs between quality, distance and fees. The assignment outcomes under GS goes against these preferences, which partly explains why the average welfare decreases.

Table 18 School Assignment: Boston

<table>
<thead>
<tr>
<th></th>
<th>Quality</th>
<th>Distance (100m)</th>
<th>Fees (100Euros)</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>7.8 (0.7)</td>
<td>7.2 (7.7)</td>
<td>7.3 (7.6)</td>
</tr>
<tr>
<td>Edu < HS</td>
<td>7.5 (0.8)</td>
<td>6.4 (6.7)</td>
<td>4.6 (6.1)</td>
</tr>
<tr>
<td>Edu = HS</td>
<td>7.8 (0.6)</td>
<td>7.0 (7.3)</td>
<td>7.2 (7.2)</td>
</tr>
<tr>
<td>Edu ≥College</td>
<td>8.0 (0.5)</td>
<td>8.0 (8.1)</td>
<td>9.2 (8.1)</td>
</tr>
</tbody>
</table>

Table 19 School Assignment: GS-Boston

<table>
<thead>
<tr>
<th></th>
<th>Quality</th>
<th>Distance</th>
<th>Fees</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>0.006 (0.3)</td>
<td>-0.3 (3.6)</td>
<td>-0.2 (2.9)</td>
</tr>
<tr>
<td>Edu < HS</td>
<td>0.006 (0.3)</td>
<td>-0.2 (3.6)</td>
<td>0.5 (2.6)</td>
</tr>
<tr>
<td>Edu = HS</td>
<td>0.006 (0.3)</td>
<td>-0.4 (3.8)</td>
<td>-0.4 (3.2)</td>
</tr>
<tr>
<td>Edu ≥College</td>
<td>0.005 (0.2)</td>
<td>-0.3 (3.4)</td>
<td>-0.6 (3.0)</td>
</tr>
</tbody>
</table>

Table 20 shows the changes when BM is replaced by TTC. School quality increases by 0.008 on average, with the lowest-educational group experiencing the biggest increase of 0.03. School-home distance increases by about 60 meters for an average household. The result thus suggests that the current Boston mechanism makes households inefficiently apply for close-by schools that they have priority for, while giving up higher-quality schools with longer distance that they have lower priority for.

Table 20 School Assignment: TTC-Boston

<table>
<thead>
<tr>
<th></th>
<th>Quality</th>
<th>Distance</th>
<th>Fees</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>0.008 (0.3)</td>
<td>0.6 (4.2)</td>
<td>0.07 (3.8)</td>
</tr>
<tr>
<td>Edu < HS</td>
<td>0.03 (0.3)</td>
<td>0.5 (3.9)</td>
<td>0.05 (3.2)</td>
</tr>
<tr>
<td>Edu = HS</td>
<td>0.002 (0.3)</td>
<td>0.8 (4.6)</td>
<td>0.10 (4.1)</td>
</tr>
<tr>
<td>Edu ≥College</td>
<td>0.005 (0.3)</td>
<td>0.5 (4.1)</td>
<td>0.05 (3.9)</td>
</tr>
</tbody>
</table>
The 2007 Reform

The 2007 reform gives priorities for households to access schools that are closest to their home locations. Depending on households’ home locations and strategic types, the reform may have affected them differently. In order to assess these impacts, we simulate the counterfactual outcomes for the 2007 applicants had they lived under the 2006 regime, taking as given the 2006 admissions probabilities. The results generated from this experiment can be interpreted in two ways: 1) the results are at the individual level, i.e., "what would have happened to a 2007 applicant had she applied in 2006?"; 2) assuming that the 2006 and 2007 cohorts are two i.i.d. random samples drawn from the same distribution, the results tell us "what would have happened to all 2007 households if the reform had not happened and if they had played the same equilibrium as the 2006 cohort?".

Table 21 presents the fractions of winning, losing and unaffected households due to the 2007 reform. About 18% of households gained and 14% of households lost from the reform. More non-strategic households were affected, with 27% winners and 22% losers. Across educational groups, the high-school educated group was the most likely to win (20%) and also the most likely to lose (15%) from the reform. The last row shows the distribution within a particular group of households who lived at the corner of school zones under the 2006 regime. In particular, we define corner households as those at least half of whose 2007 priority schools were not in their pre-reform school zones. They accounted for over 15% of all 2007 households. Not surprisingly, these households were more likely to be affected by the reform than an average household: 21% of them gained and 15% of them lost from the reform.

<table>
<thead>
<tr>
<th></th>
<th>Winner</th>
<th>Loser</th>
<th>Neither</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>18.4</td>
<td>13.6</td>
<td>68.0</td>
</tr>
<tr>
<td>Strategic</td>
<td>18.0</td>
<td>13.2</td>
<td>68.7</td>
</tr>
<tr>
<td>Non-strategic</td>
<td>27.4</td>
<td>21.5</td>
<td>51.1</td>
</tr>
<tr>
<td>Edu < HS</td>
<td>16.2</td>
<td>14.3</td>
<td>69.5</td>
</tr>
<tr>
<td>Edu = HS</td>
<td>20.4</td>
<td>15.3</td>
<td>64.4</td>
</tr>
<tr>
<td>Edu ≥ College</td>
<td>18.4</td>
<td>11.7</td>
<td>69.9</td>
</tr>
<tr>
<td>Corner</td>
<td>21.1</td>
<td>14.9</td>
<td>63.9</td>
</tr>
</tbody>
</table>

Table 22 shows the changes in welfare among all households, among winners and
among losers. Overall, the gain from the 2007 reform was 1.5, equivalent to a 150-meter decrease in distance. The average gain among the winners and that among the losers were about the same, worthy of 3 kilometers. The average welfare impacts were small for strategic households, but were significant for non-strategic households with an average benefit worthy of a 1.2-kilometer decrease in distance. Across educational groups, the college educated gained the most by 260 meters on average. The last row shows that not surprisingly, with access to close-by schools that used to be out of their school zone, households living at the corners of pre-reform zones had higher-than-average gains of 230 meters.

<table>
<thead>
<tr>
<th></th>
<th>All</th>
<th>Winner</th>
<th>Loser</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>1.5</td>
<td>30.3</td>
<td>-30.4</td>
</tr>
<tr>
<td>Strategic</td>
<td>1.0</td>
<td>16.0</td>
<td>-14.2</td>
</tr>
<tr>
<td>Non-strategic</td>
<td>11.6</td>
<td>247.6</td>
<td>-261.9</td>
</tr>
<tr>
<td>Edu < HS</td>
<td>0.4</td>
<td>21.4</td>
<td>-21.4</td>
</tr>
<tr>
<td>Edu = HS</td>
<td>0.9</td>
<td>30.9</td>
<td>-35.4</td>
</tr>
<tr>
<td>Edu ≥ College</td>
<td>2.6</td>
<td>34.9</td>
<td>-35.6</td>
</tr>
<tr>
<td>Corner</td>
<td>2.3</td>
<td>32.3</td>
<td>-29.3</td>
</tr>
</tbody>
</table>

8 Conclusion

We have developed and estimated a model of school choices by households under the Boston mechanism. We have recovered the joint distribution of household preferences and their strategic vs. non-strategic types, using administrative data from Barcelona. The model has been shown to fit the data well. We have calculated that the redefinition of school zones in 2007 improved average household welfare marginally, and improved the welfare of the non-strategic households significantly.

We contribute to the on-going debates on school choice mechanism designs by quantifying the welfare impacts of replacing the Boston mechanism with its two alternatives, GS and TTC. A change from the Boston mechanism to GS creates more losers than winners across both strategic and non-strategic households, leading to a welfare loss on average. This change also enhances the dependency of a household’s welfare on the quality of its school zones, leading to further inequality concerns across residential zones. In contrast, a change from the Boston mechanism to TTC leads
more households to win than to lose, increasing the average welfare. Furthermore, the change of BM to TTC breaks the link between the quality of a household’s school zone and it’s chance to win.

Among potential extensions to this paper, one that is particularly interesting is to incorporate household’s residential choices into the current framework. Individual households may relocate in order to take advantage of changes in school choice mechanisms and/or in residence-based priority structures. Such individual incentives will in turn affect the housing market. There is a large literature on the capitalization of school quality for housing prices, as reviewed by Black and Machin (2010) and Gibbons and Machin (2008). An important yet challenging research project involves combining this literature and the framework proposed in our paper, in order to form a more comprehensive view of the equilibrium impacts of school choice mechanisms on households’ choices of schools and residential areas and on the housing market.

References

46 Ries and Somerville (2010) exploit changes in the catchment areas of public schools in Vancouver and find significant effects of school performance on housing prices. Epple and Romano (2003) conjecture that school choice systems can eliminate the capitalization of school quality on the housing market. Machin and Salvanes (2010) exploit policy reforms in Oslo that allowed students to attend schools without having to live in the school’s catchment area, and find a significant decrease in the correlation between a school’s quality and housing prices.

40

Appendix

A1.1 Set of optimal list for a strategic household

Consider an optimal list $A_i^1 = \{a_1^1, ..., a_r^1, ...a_R^1 \}$ derived by the backward induction as in Section 3.3.2, if the student does not face 100% admissions rate for any of the first $r-1$ listed schools, and she does for the r^{th} listed school $\left(p_{a_r^1}(s_i) = 1\right)$, then the following lists all generate the same value for the household as A_i^1 does, and hence are all optimal:

1) a list that shares the same first r elements of A_i^1.
2) a list of length n ($r < n \leq R$), which shares the same first $r-1$ elements of A_i, and the last (n^{th}) element is a_r^1, and for all elements $r' \in \{r, ..., n-1\}$, the household faces 0 admissions probability.
3) Furthermore, if this r^{th} listed school is one’s backup school with $p_{a_r}(:) = 1$, then any list of length n ($r-1 \leq n \leq R$) is also optimal if it has the same first $r-1$ elements of A_i^1 and the admissions probabilities to the other elements are all 0.

For components on a list that do not affect the value of the list, we do not impose that they be in the set J_i^* chosen in the first part of a strategic household’s decision procedure.

A2. Proof for Claim 1

An application list with the following features reveal that the household must be non-strategic: 1) for some r^{th} ($r > 1$) element a_r on the list $p_{a_r}(s_i) = 0$, and 2) $p_{a_r'}(s_i) < 1$ for all $r' < r$, and 3) for some $r \geq r + 1$, 0 < $p_{a_{r''}}(s_i) < 1$ and $p_{a_{r''}'}(s_i) < 1$ for any $r < r'' < r'''$.

Without Feature 2), the list can still be strategically optimal due to Remark 1. Without Feature 3) a household may still be strategic if it prefers some sure-to-get-in school listed later over any of the schools listed after a_r, including a_r. All three features guarantee that the household is non-strategic.

Proof. Take a given list that satisfies all three features in Claim 1: $A = \{a_1, ..., a_r, ..., a_{r''}, \}$, where a_r is the first school that satisfies feature 3). Let $W_i^r(A)$ be the residual value
of this list starting from the \(r^{th}\) element.

\[
W^r_i (A) = p^r_{a_r} (s_i) v_{ia_r} + (1 - p^r_{a_r} (s_i)) W^r_{i+1} (A) \\
= W^r_{i+1} (A) \\
= p^r_{a_{r+1}} (s_i) v_{ia_r} + (1 - p^r_{a_{r+1}} (s_i)) W^r_{i+2} (A) \\
= ... \\
= p^r_{a_{r'}} (s_i) v_{ia_r} + (1 - p^r_{a_{r'}} (s_i)) W^r_{i} (A) \\
= W^r_{i} (A).
\]

The equalities follow from the fact that any school listed between \(a_r\) and \(a_{r'}\) must have admissions probability of zero for household \(i\).

Consider an alternative (not necessarily optimal) application list \(B = \{a_1, ..., a_{r'}, ..., a_{r''}, ...\}\), which differs from \(A\) only in that it replace \(a_r\) with \(a_{r'}\). The residual value of this list at its \(r^{th}\) element (now \(a_{r'}\)) is given by

\[
W^r_i (B) = p^r_{a_{r'}} (s_i) v_{ia_{r'}} + (1 - p^r_{a_{r'}} (s_i)) W^r_{i+1} (B) \\
= p^r_{a_{r'}} (s_i) v_{ia_{r'}} + (1 - p^r_{a_{r'}} (s_i)) W^r_{i+1} (A) \\
= p^r_{a_{r'}} (s_i) v_{ia_{r'}} + (1 - p^r_{a_{r'}} (s_i)) W^r_{i} (A) \\
> p^r_{a_{r'}} (s_i) v_{ia_{r'}} + (1 - p^r_{a_{r'}} (s_i)) W^r_{i} (A) \\
= W^r_{i} (A).
\]

The second and third line holds because the rest of list \(B\) is the same as \(A\), and the value of \(W^{k+1}_i (\cdot)\) is independent of what one chooses in slot \(k\), for any \(k > 1\). The third line follows because \(p^r_{a_{r'}} (s_i) > p^r_{a_{r'}}\) (admissions probabilities decrease over rounds) and

\[
v_{ia_{r'}} = E \max \{u_{ia_{r'}}, \eta\} > E (\eta) > 0.
\]

Given that the first \(r-1\) elements are also unchanged, it is immediate that the value of the whole list \(W^1_i (B) > W^1_i (A)\).

B1. Detailed Functional Forms

Household Characteristics: \(x_i = [x_{i1}, ..., x_{i5}]\), where \(x_{i1} = I (edu_i < \text{high school})\), \(x_{i2} = I (edu_i = \text{high school})\), \(x_{i3} = I (edu_i \geq \text{College})\), \(x_{i4} = I (\text{single parent}_i = 1)\), \(x_{i5} = \text{Sibling's school} (x_{i5} = 0 \text{ if outside school, } \in \{1, ..., J\} \text{ if non-private school})\).
if no sibling).
School Characteristics: \(w_j = [w_{j1}, w_{j2}, w_{j3}, w_{j4}] \), where \(w_{j1} \) is school quality, \(w_{j2} \) is tuition level, \(w_{j3} \) is capacity, and \(w_{j4} = I (\text{semi-public}) \). Let \(q^g (q^b) \) be the 75th (25th) percentile of school quality.

Home-school distance: \(d_{ij} \), measured in 100 meters.

Zone Characteristics: Let \(N_z \) be the number of schools in zone \(z \), and \(q_z \) be the average school quality in zone \(z \).

B1.1 Utility functions

Household utility is given by \(u_{ij} = U (w_j, x_i, d_{ij}) + U_0 (z) + \varepsilon_{ij} \). Define \(g (\cdot) \) and \(C (\cdot) \) such that

\[
g (w_j, x_i) = \alpha_0 + \sum_{m=1}^{4} \alpha_m x_{im} + w_{j1} \left(\sum_{m=1}^{3} \alpha_{4+m} x_{im} \right) + (w_{j1} - q^g)^2 I (w_{j1} > q^g) \left(\sum_{m=1}^{3} \alpha_{7+m} x_{im} \right)
+ \alpha_{11} (w_{j1} - q^b)^2 I (w_{j1} > q^b) + \alpha_{12} [I (x_{i5} = j) - I (x_{i5} = 0)]
+ \alpha_{13} I (w_{j3} = 2) + \alpha_{14} I (w_{j3} = 3) + \alpha_{15} I (w_{j3} > 3) + \alpha_{16} w_{j4}
+ w_{j2} \left(\sum_{m=1}^{3} \alpha_{16+m} x_{im} \right) + \alpha_{20} (w_{j2})^2,
\]

and

\[
C (d_{ij}) = [d_{ij} + c_1 d_{ij}^2 + c_2 I (d_{ij} > 5) + c_3 I (d_{ij} > 10)] .
\]

\[
U_0 (z) = \gamma_1 N_z + \gamma_2 q_z .
\]

B1.2 Type distribution

\[
\lambda (x_i, l_i) = \frac{\exp (\beta_0 + \sum_{m=1}^{4} \beta_m x_{im} + \beta_5 I (x_{i5} \geq 0) + \beta_6 N_{z_{l_i}} + \beta_7 q_{z_{l_i}})}{1 + \exp (\beta_0 + \sum_{m=1}^{4} \beta_m x_{im} + \beta_5 I (x_{i5} \geq 0) + \beta_6 N_{z_{l_i}} + \beta_7 q_{z_{l_i}})} .
\]

B2. Identification

Since the dispersion of post-application shocks is mainly identified from the enrollment decisions, to ease the illustration, we show the identification of the model without post-application shocks. A household has observables \((x_i, l_i)\) and can be one of two types \(T = 0, 1 \). Home-school distance is given by \(d_{ji} = d (l_i, l_j) \) and \(z_{l_i} \) is
the zone that \(l_i \) belongs. Let the taste for school be \(\epsilon_{ij} \sim i.i.d. N(0, 1) \).\(^{47}\) In line with (IA1) and (IA2) in the paper, assume that \(d \) is independent of \(T \) conditional on \((x, z_i)\) and \(\epsilon \) is independent of \((x, l, T)\). To give the idea, consider the case where a household can apply only to one school from the choice set of schools 1 and 2, and where all households face the same admissions probabilities. Household-specific admissions probabilities provide more variations, which will provide more identification power.

Let \(\pi_{ij} \) be the utility net of individual taste, \(\pi_{ij} = g(w_j, x_i) - C(d_{ij}) + U_0(z_{li}) \). Let \(p_j \) be the probability of admission to school \(j \) and \(p_1 \neq p_2 \), and \(p_j > 0 \). Let \(y \) be the decision to list 1 (regardless of whether or not 2 is listed). \(y \) is related to the latent variable \(y^* \) in the following way

\[
y(x_i, l_i, \epsilon_i, T) = 1 \text{ if only if } y^*(x_i, l_i, \epsilon_i, T) = T(p_{i1}u_{i1} - p_{i2}u_{i2}) + (1 - T)(u_{i1} - u_{i2}) > 0.
\]

Hence the probability of observing the decision to list 1 by someone with \((x_i, l_i)\) is

\[
H(x_i, l_i) = \lambda(x_i, z_{li}) \Phi \left(\frac{p_{i1}u_{i1} - p_{i2}u_{i2}}{\sqrt{p_{i1}^2 + p_{i2}^2}} \right) + (1 - \lambda(x_i, z_{li})) \Phi \left(\frac{u_{i1} - u_{i2}}{\sqrt{2}} \right).
\]

Fix \((x, z_t)\), \(H(\cdot) \) only varies with \(d \), so we can suppress the dependence on \((x, z_t)\). Within \((x, z_t)\), let \(g(w_j, x) = g_j \) and \(U_0(z_{li}) = U_0 \), such that

\[
H(d) = \lambda \Phi \left(\frac{(p_{i1}g_1 - p_{i2}g_2 + (p_{i1} - p_{i2})U_0) - (p_{i1}C(d_1) - p_{i2}C(d_2))}{\sqrt{p_{i1}^2 + p_{i2}^2}} \right) + (1 - \lambda) \Phi \left(\frac{(g_1 - g_2) - (C(d_1) - C(d_2))}{\sqrt{2}} \right). \tag{5}
\]

B2.1 Identification of \(g(\cdot), U_0(\cdot) \) **and** \(\lambda(\cdot) **

The following theorem shows that fix any \((x, z_t)\), \(g(w_j, x) \), \(U_0(z_t) \) and \(\lambda(x, z_t) \) are identified.

Theorem 1 Assume that 1) \(\lambda \in (0, 1) \), 2) there exists an open set \(D^* \subseteq D \) such that for \(d_{ij} \in D^* \), \(C'(d_{ij}) \neq 0 \). Then the parameters \(\theta = [g_1, g_2, \lambda]' \) in (5) are locally

\(^{47}\)Given that the linear distance enters the utility function with coefficient of minus one, the standard deviation of \(\epsilon \) is identified from the variation in distance within \((x, z_t)\) group. To simplify the notation, we will present the case where \(\sigma_\epsilon \) is normalized to 1.
identiﬁed from the observed application decisions.

Proof. The proof draws on the well-known equivalence of local identiﬁcation with positive deﬁniteness of the information matrix. In the following, I will show the positive deﬁniteness of the information matrix for model (5).

Step 1. Claim: *The information matrix* \(I(\theta) \) *is positive definite if and only if there exist no* \(\omega \neq 0 \), *such that* \(\omega \frac{\partial H(d)}{\partial \theta} = 0 \) *for all* \(d \).

The log likelihood of an observation \((y, d) \) is

\[
L(\theta) = y \ln(H(d)) + (1 - y) \ln(1 - H(d)).
\]

The score function is given by

\[
\frac{\partial L}{\partial \theta} = \frac{y - H(d)}{H(d)(1 - H(d))} \frac{\partial H(d)}{\partial \theta}.
\]

Hence, the information matrix is

\[
I(\theta|d) = E \left[\frac{\partial L}{\partial \theta} \frac{\partial L}{\partial \theta'} | d \right] = \frac{1}{H(d)(1 - H(d))} \frac{\partial H(d)}{\partial \theta} \frac{\partial H(d)}{\partial \theta'}.
\]

Given \(H(d) \in (0, 1) \), it is easy to show that the claim holds.

Step 2. Show \(\omega \frac{\partial H(d)}{\partial \theta} = 0 \) for all \(d \implies \omega = 0 \).

Define \(p^*_j = \frac{p^*_j}{\sqrt{p^*_1 + p^*_2}} \), \(B_1(d) = (p^*_1 g_1 - p^*_2 g_2 + (p^*_1 - p^*_2) U_0) - (p^*_1 C(d_1) - p^*_2 C(d_2)) \), and \(B_0(d) = \left(\frac{(g_1 - g_2) - (C(d_1) - C(d_2))}{\sqrt{2}} \right) \), \(\frac{\partial H(d)}{\partial \theta} \) is given by:

\[
\frac{\partial H(d)}{\partial \lambda} = \Phi(B_1(d)) - \Phi(B_0(d))
\]

\[
\frac{\partial H(d)}{\partial g_1} = \lambda \phi(B_1(d)) p^*_1 + (1 - \lambda) \phi(B_0(d)) \frac{1}{\sqrt{2}}
\]

\[
\frac{\partial H(d)}{\partial g_2} = -\lambda \phi(B_1(d)) p^*_2 - (1 - \lambda) \phi(B_0(d)) \frac{1}{\sqrt{2}}
\]

\[
\frac{\partial H(d)}{\partial U_0} = \lambda \phi(B_1(d)) (p^*_1 - p^*_2).
\]
Suppose for some ω, $\omega' \frac{\partial H(d)}{\partial \theta} = 0$ for all d:

$$
\omega_1[\Phi(B_1) - \Phi(B_0)] + \omega_2 \left(\lambda \phi(B_1)p_1^* + (1 - \lambda) \phi(B_0) \frac{1}{\sqrt{2}} \right) - \omega_3 \left(\frac{\lambda \phi(B_1)p_2^* + (1 - \lambda) \phi(B_0)}{\sqrt{2}} \right) + \omega_4 \lambda \phi(B_1(d)) (p_1^* - p_2^*) = 0
$$

Take derivative with respect to d_2 evaluated at some $d_2 \in D^*$

$$
\omega_1[\phi(B_1)p_2^* - \frac{\phi(B_0)}{\sqrt{2}}] C'(d_2) + \omega_2 \left(\lambda \phi'(B_1) p_1^* p_2^* + (1 - \lambda) \phi'(B_0) \frac{1}{\sqrt{2}} \right) C'(d_2) - \omega_3 \left(\lambda \phi'(B_1)(p_2^*)^2 + (1 - \lambda) \phi'(B_0) \frac{1}{\sqrt{2}} \right) C'(d_2) + \omega_4 \lambda \phi'(B_1)(p_1^* - p_2^*) p_2^* C'(d_2) = 0.
$$

Define $\gamma(d) = \frac{\phi(B_1)}{\phi(B_0)}$, divide (6) by $\phi(B_0)$:

$$
\omega_1[\gamma(d)p_2^* - \frac{1}{\sqrt{2}}] - \omega_2 \left(\lambda B_1 \gamma(d) p_1^* p_2^* + (1 - \lambda) B_0 \frac{1}{2} \right) + \omega_3 \left(\lambda B_1 \gamma(d) (p_2^*)^2 + (1 - \lambda) B_0 \frac{1}{2} \right) - \omega_4 \lambda B_1 \gamma(d) (p_1^* - p_2^*) p_2^* = 0
$$

$$
\gamma(d)[\omega_1 p_2^* - \lambda B_1 p_2^*(\omega_2 p_1^* - \omega_3 p_2^* + \omega_4 (p_1^* - p_2^*))] - \left[\frac{\omega_1}{\sqrt{2}} + (\omega_2 - \omega_3) (1 - \lambda) B_0 \frac{1}{2} \right] = 0.
$$

(7)

Since $\gamma(d)$ is a nontrivial exponential function of d, (7) hold for all $d \in D^*$ only if both terms in brackets are zero for each $d \in D^*$, i.e.

$$
\omega_1 p_2^* - \lambda B_1(d) p_2^*(\omega_2 p_1^* - \omega_3 p_2^* + \omega_4 (p_1^* - p_2^*)) = 0
$$

$$
\frac{\omega_1}{\sqrt{2}} + (\omega_2 - \omega_3) (1 - \lambda) B_0(d) \frac{1}{2} = 0.
$$

(8)

Take derivative of (8) again with respect to d_2, evaluated at $d_2 \in D^*$:

$$
-\lambda C'(d_2)(p_2^*)^2 (\omega_2 p_1^* - \omega_3 p_2^* + \omega_4 (p_1^* - p_2^*)) = 0
$$

$$
(\omega_2 - \omega_3) (1 - \lambda) C'(d_2) \frac{1}{2\sqrt{2}} = 0.
$$
Since $\lambda \in (0, 1)$, $p_j > 0$ and $C'(d_2) \neq 0$ for some d, we have
\[
\omega_2 p_1^* - \omega_3 p_2^* + \omega_4 (p_1^* - p_2^*) = 0
\]
\[
\omega_2 - \omega_3 = 0.
\]
Since $p_1 \neq p_2$, it must be that $\omega = 0$. ■

B2.2 Identification of $C(d_{ij})$.

Given the identification result from B2.1, and given that $C(d_{ij})$ is common across (x, z_l)’s, the parameters in $C(d_{ij})$ solves for the system of equations (5), where one equation corresponds to one (x, z_l).

C. Institutional Details and Data Details

C1 Priority Score Structure

Case 1: Those who does not have a sibling in school have two levels: $x_i a (x_i a + b_1)$ for out-of-zone (in-zone) schools.

Case 2: Those whose sibling(s) is (are) in in-zone schools has 3 levels: $x_i a (x_i a + b_1)$ for out-of-zone (in-zone) non-sibling schools, and $x_i a + b_1 + b_2$ for sibling schools.

Case 3: Those whose sibling(s) is (are) in out-of-zone schools has 3 levels: $x_i a (x_i a + b_1)$ for out-of-zone (in-zone) non-sibling schools, and $x_i a + b_2$ for sibling schools.

Case 4: Those with sibling(s) in some in-zone school and sibling(s) in some out-of-zone school has 4 levels: $x_i a (x_i a + b_1)$ for out-of-zone (in-zone) non-sibling schools, and $x_i a + b_2 (x_i a + b_1 + b_2)$ for out-of-zone (in-zone) sibling schools.

<p>| Table A1 Model Fit: Relevant List Length 2006 (%) |
|---------------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Edu < HS | Edu = HS | Edu ≥ College | Single Parents |</p>
<table>
<thead>
<tr>
<th>Data</th>
<th>Model</th>
<th>Data</th>
<th>Model</th>
<th>Data</th>
<th>Model</th>
<th>Data</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>87.1</td>
<td>85.3</td>
<td>83.7</td>
<td>82.1</td>
<td>86.8</td>
<td>84.5</td>
<td>85.8</td>
</tr>
<tr>
<td>2</td>
<td>11.2</td>
<td>11.7</td>
<td>13.0</td>
<td>13.0</td>
<td>10.6</td>
<td>11.2</td>
<td>11.4</td>
</tr>
<tr>
<td>≥ 3</td>
<td>1.7</td>
<td>3.0</td>
<td>3.3</td>
<td>3.9</td>
<td>2.6</td>
<td>4.3</td>
<td>2.8</td>
</tr>
</tbody>
</table>
Table A2 Model Fit: Assignment Round 2006 (%)

<table>
<thead>
<tr>
<th></th>
<th>Edu < HS</th>
<th>Edu = HS</th>
<th>Edu ≥ College</th>
<th>Single Parents</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Data</td>
<td>Model</td>
<td>Data</td>
<td>Model</td>
</tr>
<tr>
<td>1</td>
<td>93.2</td>
<td>95.1</td>
<td>92.0</td>
<td>93.7</td>
</tr>
<tr>
<td>2</td>
<td>2.7</td>
<td>1.7</td>
<td>3.5</td>
<td>2.3</td>
</tr>
<tr>
<td>≥ 3</td>
<td>1.6</td>
<td>0.1</td>
<td>1.5</td>
<td>0.5</td>
</tr>
<tr>
<td>Unassigned</td>
<td>2.5</td>
<td>3.1</td>
<td>3.0</td>
<td>3.5</td>
</tr>
</tbody>
</table>

Table A3 Model Fit: Top-Listed Schools 2006

<table>
<thead>
<tr>
<th></th>
<th>Quality</th>
<th>Distance (100m)</th>
<th>Tuition (100 Euros)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Data</td>
<td>Model</td>
<td>Data</td>
</tr>
<tr>
<td>Parental Edu < HS</td>
<td>7.6</td>
<td>7.6</td>
<td>5.2</td>
</tr>
<tr>
<td>Parental Edu = HS</td>
<td>7.9</td>
<td>7.9</td>
<td>7.0</td>
</tr>
<tr>
<td>Parental Edu ≥ College</td>
<td>8.2</td>
<td>8.1</td>
<td>8.7</td>
</tr>
<tr>
<td>Single-Parent</td>
<td>8.0</td>
<td>8.0</td>
<td>8.1</td>
</tr>
</tbody>
</table>

Table A4 Model Fit: Relevant List Length 2007 (%)

<table>
<thead>
<tr>
<th></th>
<th>Edu < HS</th>
<th>Edu = HS</th>
<th>Edu ≥ College</th>
<th>Single Parents</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Data</td>
<td>Model</td>
<td>Data</td>
<td>Model</td>
</tr>
<tr>
<td>1</td>
<td>85.2</td>
<td>86.7</td>
<td>84.8</td>
<td>85.2</td>
</tr>
<tr>
<td>2</td>
<td>12.4</td>
<td>10.3</td>
<td>12.4</td>
<td>11.0</td>
</tr>
<tr>
<td>≥ 3</td>
<td>2.4</td>
<td>3.0</td>
<td>2.8</td>
<td>3.8</td>
</tr>
</tbody>
</table>

Table A5 Model Fit: Assignment Round 2007 (%)

<table>
<thead>
<tr>
<th></th>
<th>Edu < HS</th>
<th>Edu = HS</th>
<th>Edu ≥ College</th>
<th>Single Parents</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Data</td>
<td>Model</td>
<td>Data</td>
<td>Model</td>
</tr>
<tr>
<td>1</td>
<td>91.0</td>
<td>94.8</td>
<td>90.6</td>
<td>94.3</td>
</tr>
<tr>
<td>2</td>
<td>3.7</td>
<td>1.7</td>
<td>3.2</td>
<td>2.3</td>
</tr>
<tr>
<td>≥ 3</td>
<td>1.6</td>
<td>0.2</td>
<td>2.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Unassigned</td>
<td>3.5</td>
<td>3.3</td>
<td>4.0</td>
<td>3.5</td>
</tr>
</tbody>
</table>
Table A6 Model Fit: Top-Listed Schools 2007

<table>
<thead>
<tr>
<th></th>
<th>Quality Data</th>
<th>Quality Model</th>
<th>Distance (100m) Data</th>
<th>Distance (100m) Model</th>
<th>Tuition (100 Euros) Data</th>
<th>Tuition (100 Euros) Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parental Edu < HS</td>
<td>7.5</td>
<td>7.5</td>
<td>5.2</td>
<td>5.9</td>
<td>5.3</td>
<td>5.2</td>
</tr>
<tr>
<td>Parental Edu = HS</td>
<td>8.0</td>
<td>7.9</td>
<td>6.3</td>
<td>6.5</td>
<td>8.2</td>
<td>8.2</td>
</tr>
<tr>
<td>Parental Edu ≥College</td>
<td>8.2</td>
<td>8.1</td>
<td>7.8</td>
<td>8.0</td>
<td>9.7</td>
<td>9.9</td>
</tr>
<tr>
<td>Single-Parent</td>
<td>8.0</td>
<td>7.9</td>
<td>6.8</td>
<td>7.0</td>
<td>8.2</td>
<td>8.5</td>
</tr>
</tbody>
</table>