Political Instability, Foreign Investment and Growth in Proprietary Economies

Jody Overland
University of Colorado at Denver, 73110.3621@compuserve.com

Michael Spagat
Royal Holloway College, University of London, M.Spagat@rhbnc.ac.uk
February 17, 1998

Abstract

Developing country leaders typically resemble proprietors more than benevolent social planners, i.e., they are powerful individuals pursuing their own interests while they remain in power. We model growth in a "proprietary economy" during such periods as an endogenous probability of "political catastrophe" that would hurt foreign investors and extinguish the proprietor's wealth extraction ability. We provide theory in which domestic capital exhibits a bifurcation point determining economic growth or shrinkage. With low initial domestic capital the proprietor plunders the country's resources and the economy shrinks, even when shrinkage is not socially optimal. With high initial domestic capital the economy grows faster than is socially optimal.

*This research was generously supported by the National Council on Soviet and East European Research and the New Economic School in Moscow. We especially thank Vladimir Arkin and Alexander Stelovsky. We also thank Steven Barber, Olaf Gieseke, Renske Grasmann, Barry Hirsch, Steven Minnemann, David Voil, and seminar participants at Brown University, Royal Holloway College, University of Colorado, Denver, the 1997 Society for Economic Dynamics Conference, the 1997 GET Conference in Moscow. In addition we thank Olga Korovin for excellent research assistance.
1. Introduction

This paper studies the relationship between growth, foreign investment, and political instability in poor countries that have the potential to break out of poverty and achieve rapid growth, as well as in relatively rich countries where there is a danger of precipitous and long-term decline. One obvious fact about economics of either type is that few are stable democracies.\(^1\) Rather, strong individuals or groups that take a proprietary attitude toward their country and its wealth are generally at the helm—we refer to these individuals or groups as dictators.\(^2\) It is fair to say that the enormous growth literature has not yet concerned itself with the possible implications of regimes of this type.\(^3\) At the same time, there is now a rapidly growing political economy literature that studies the behavior of proprietary regimes, but little of this literature considers dynamic growth models. Our model is at the intersection of these approaches, studying the consequences of proprietary politics for growth as mediated through foreign investment and political instability.

Robert Barro, in “Getting It Right,” (1996 - p.3), states that dictators “come in two types: one whose personal objectives often conflict

\(^1\) To quote De Long (1991) “In most countries the political aftermath of decommunization was a catastrophe; ... parliamentary politics and independence. Judgments so far do not include any exception ... regimes emerged that derived their authority not from electoral politics but from the army and the police...” (Ch 7, p.1). See also Badeau (1997). Lucas (1993) points out that growth rates tend to be far less stable in developing countries than in established democracies, but no one seems to have followed up on this idea.

\(^2\) Grammner, N. and B. Rich (1994) assert that this type of government is the rule in non-democracies. Indonesia serves as a prime example: in 1958, hyperinflation triggered a communist rebellion that was put down by Sukarno. Since then he has built his country through an extended period of low inflation and rapid growth. However, there is the caveat that the Sukarno family and the top military leadership “in cabinets with ethnic Chinese warn complacency” own essentially all of the industry in Indonesia (Bachurin (1991)). Haggard (1997) describes the imprisonment of the leading business figures of South Korea in 1966 who were only released after ensuring their cooperation with the administration. Another case is that of the former Zaire where Mobutu who同 Leopold Zaire with a true heart, plundering the country’s natural resources with the help of foreign interests, most notably the French, greatly enriching himself and his cronies while the economy declined. Rather than develop domestic infrastructure, Mobutu accepted millions of dollars in bribes to allow foreign interests to essentially steal the country’s mineral wealth (Bachurin 1997). De la Blaixe (1995) in reference to Argentine statesmen “...those who control the government believe they own the government...”

\(^3\) Easterly (1997) discusses the gap between academic growth literature and the realities of developing economics (p.29).
with growth promotion and another whose interests dictate a preoccupation with economic development. The theory that determines which kind of dictatorship will prevail is missing.\footnote{Argen\c{c}o de la \c{I}l\l{a}ra (1953). "Among the group of fifteen most advanced previa nations, Argentina distinguished itself ... with the greatest political instability of the period." (p.4). Of course Argentina is famous for its economic decline during this long period of political instability (see footnote 9 for details). Other examples abound: Somalia, Italy, and the countries that comprised the former Yugoslavia are recent examples of the economic catastrophe that attends extreme political instability.}

This paper presents an intuitively appealing theory that determines which of two paths a proprietory economy (dictatorship) is likely to follow—growth or decay. Political instability in a major impediment to economic growth in a wide variety of countries.\footnote{Socialist and Imperialistic (1990). Artificial and Opalinski (1972), and Gasco and Spages (1997) have dynamic models with endogenous political instability. Elinson and Sltid (1990 a 1991) model endogenous political instability as a static setting.} Instability, implying risk, limits investments, and hence growth. Political risk assessments play a major role in business investment decisions making.\footnote{He Long (ch. 21, p.78) states that the passage Argentine government under Fierro saw itself as a model of democracy and economic growth for increased domestic consumption. Although in 1950 they were as rich as any large country in Europe; by 1950 they were "poorer than Italy and had no more than third of the GDP per capita of France or West Germany." As de la \l{I}l\l{a}ra (1993) we find that Argentina, a country with roughly the same GDP per capita as France and Germany in the first four decades of the country now has a GDP per capita of roughly 1/3 that country.} This is recognized in the academic political economy literature in which models often include some form of political instability.\footnote{Dez and Lomborg (1995) survey many empirical works on links between growth and indices of government (democracy, autocracy, and bureaucratic). Mitter (1991) is a very recent empirical study on the effects of political stability and democratization on growth in which the nature of various international regimes is documented.} Moreover, since physical capital is becoming increasingly mobile across countries and regions, the role of political instability in economic decision making is increasing as foreign investment and capital flight respond ever more sensitively to changes in country’s political environments.

Emerging markets by their very nature have underdeveloped "domestic capital", relative to the world’s richest countries. This is especially true if we adopt a broad concept of domestic capital that goes beyond traditional physical capital. As used in this paper, the term domestic capital is meant to include physical infrastructure (roads, bridges, telephones lines, etc.), market infrastructure (stock, bond, and derivative markets, banks, a functioning legal system, etc.), and human capital. It is generally well accepted that all of these domestic capital elements are crucial for attracting foreign investment—a factor that figures prominently in our model.

While the above considerations are standard, in this paper we introduce the more novel assumption that domestic capital development contributes to political stabilization while domestic capital deterioration causes political destabilization. The idea underlying this relationship is that domestic capital development increases the number and influence of individuals with a strong interest in the continuance of the current political status quo, thereby stabilizing the system.\footnote{Dez and Lomborg (1995) survey many empirical works on links between growth and indices of government (democracy, autocracy, and bureaucratic). Mitter (1991) is a very recent empirical study on the effects of political stability and democratization on growth in which the nature of various international regimes is documented.}

We also consider a different formulation under which instability is a function of domestic consumption as an alternative to domestic capital-based instability. This is in accordance with the view of a proprietor trying to modify the population and gain increased stability through increased aggregate consumption.\footnote{Dez and Lomborg (1995) survey many empirical works on links between growth and indices of government (democracy, autocracy, and bureaucratic). Mitter (1991) is a very recent empirical study on the effects of political stability and democratization on growth in which the nature of various international regimes is documented.} Of course there is a natural relationship between these two sources of political instability, since more domestic capital increases output, and thus allows more consumption. All of our results hold under both sources of political instability, although they vary in the details in interesting ways.

The mixed economy evolves over time with a proprietor leading determining public investment in domestic capital in every period. Domestic and foreign capital are complementary, so foreign investors are directly attracted by good domestic capital. Foreign investors are also attracted by the political stability that is a consequence of either good domestic capital or high current consumption.\footnote{Dez and Lomborg (1995) survey many empirical works on links between growth and indices of government (democracy, autocracy, and bureaucratic). Mitter (1991) is a very recent empirical study on the effects of political stability and democratization on growth in which the nature of various international regimes is documented.}

The proprietor maximizes the discounted present value of his own consumption—an increasing function of aggregate consumption—while he remains in office. The stochastic and endogenous survival process is determined by political stability, which evolves over time. We consider the proprietor’s behavior with that of a social planner, with the distinction being that the former does not care what happens to the economy after he loses power, while the latter maximizes a full infinite discounted stream of utility.

Models in which political stability is determined jointly with other factors and evolves dynamically tend to be too complex for complete analysis, and ours is not an exception. We are able to represent our model in the form of a dynamic process.
grain and so have been able to implement a computer algorithm that determines optimal government policy. This enables us to solve for the full dynamic paths of the evolution of domestic capital, economic output, aggregate consumption, and political stability for any set of initial conditions.

Our first result is that there are only three possible qualitative paths for domestic capital: steady growth, steady deterioration, or zero growth.12 In particular, a "U-shape" scenario under which domestic capital first deteriorates and then reverses course cannot occur. There is a very straightforward intuitive underlying this result. Domestic capital deterioration decreases stability, worsening the conditions for domestic capital investment, leading to further deterioration, completing a vicious cycle. Under these conditions the proprietors aggressively plunder the country's resources, realizing that in doing so he hastens his departure from power and, hence, his ability to continue extracting wealth.

On the other hand, there is a self-reinforcing cycle underlying steady growth that has mirror-image intuition: domestic capital growth increases stability, improving the conditions for increased domestic capital investment, leading to further growth, completing a virtuous circle. In this case, the proprietor is restrained in his wealth extraction in order to lengthen the time he will enjoy the benefits of continued power.

A related key result is that if the economy begins with sufficient domestic capital to promote political stability, then there is steady growth; otherwise, there is steady deterioration. In other words, there is a critical level of domestic capital, which defines a bifurcation point: an economy below this level finds itself in a development trap whereas one above this threshold follows a path of steady growth.13 These results are robust to whether the source of political instability is consumption-based or domestic capital-based.

Next, we are able to analyze how the bifurcation point depends on the underlying parameters. In particular, it is increasing in the world interest rate and the proprietor's time discount, but decreasing in the technology of domestic-capital development and the technology of political stabilization.

The shape of the policy function, giving consumption as a function of domestic capital, is of special interest (see figure 10 for an example). It shows that consumption increases up to the bifurcation point, reverses course and then once again begins to increase. This means that if the proprietor chooses for the economy to shrink, then more domestic capital simply means more consumption. In effect, the proprietor does not expect to be around very long, so he enjoys himself as much as possible while he has the chance. On the other hand, if the proprietor considers the economy just fit enough to grow (domestic capital is slightly above the bifurcation point) then he invests much more than he would if domestic capital were just below the bifurcation point. So if the proprietor chooses growth, then he chooses rapid growth in order to increase the longevity of his rule.

We then explore the dynamic consequences of the differences between the proprietor's and social planner's policy functions. When domestic capital is above the bifurcation point, the proprietor economy tends to grow (sub-optimally) faster than the social planner's economy. This is consistent with empirical evidence that democracy may actually slow growth. We believe that this result provides insight into the rapid growth experience of the Asian Tiger economies and other "proprietorial" systems that had declining consumption rates (and increasing saving rates) during their takeoff phases.14 Again, the intuition is that the proprietor expects high growth rates to prolong his tenure in power. Correspondingly, social planners economies below the bifurcation point tend to shrink when, with the same endowment, social planners would choose to grow - or else shrink faster than would socially planned economies.15

We look at the differences between the behavior of regimes in which instability is consumption-based and those in which instability is domestic capital-based. We find that consumption-based instability expands the basin of attraction of the

12Scharf, Rother, and Welt (1992) and Overland (1991) document these increasing savings rates. De Long (1991) referring to the period from the 60's on states "Relatively low expansive modern dictatorships... produced rapid growth and impressive economic growth is the non-Communist Long Run of Latin America..." (ch.3). (p.2).
13Burns (1996) states: "... the effects of an autocracy are severe, however, if the dictator uses his or her power to steal the nation's wealth...." Butcher (1979) states that "...when public revenues meant for building productivity-enhancing infrastructure are diverted for personal private consumption... growth rates obviously will be adversely affected." De Long (1991) lists a group of countries with proprietor regimes that have not followed the above-bifurcation growth path in which: "... the average person is probably poorer in absolute terms than their counterparts back in 1965. " This group includes Mozambique, Togo, Ethiopia, Tanzania, Senegal, China (new Republic of Congo), Uganda, Argentina, Bolivia, Chile, El Salvador, Peru, Nicaragua, and Jamaica. De Long attributes these countries' steady decline to "Government by Thieves" or "kleptocratic" situations where the leaders have "sacrificed economic development and the long-run interests of all to the short-run interests of a relative few." (Ch. 21, p.3).
14
poverty trap, in other words, consumption-based instability raises the bifurcation point. There is a range of domestic capital levels over which growth is optimal if instability is domestic capital-based that lead a proprietor facing consumption-based instability to run down the economy. Furthermore, when two otherwise identical economies are both above their respective bifurcation points, capital-based instability tends to lead to faster growth.

The plan of the paper is as follows. In section two we present the model with domestic capital-based instability and then at the end of the section we introduce the consumption-based instability version. The results are shown and analyzed in section three, and we conclude in section four.

2. The Model

2.1. Production

The economy’s production function is

$$G(F_t, D_t) = F_t^a D_t^{1-a} \quad (2.1)$$

where F_t is foreign capital and D_t is domestic capital at time t respectively and where $a = 1, 2, \ldots$ is measured in discrete intervals. As mentioned above, our generalized concept of domestic capital includes low-technology capital, physical infrastructure, market infrastructure and human capital. Foreign capital is complementary to domestic capital and includes such factors as advanced technology, sophisticated physical capital and modern managerial skills—factors of production not readily available in the domestic economy.

2.2. Political Catastrophes

A key feature in the model is that in every period there is an endogenous probability of a political catastrophe, the possibility of which has major implications for the economy and the government. Political catastrophe has the following two consequences: 1) the proprietor is permanently removed from power—gaining zero utility in perpetuity; 2) foreign capital earns a rate of return of zero percent during the period of political catastrophe. This implies that a positive probability of political catastrophe shortens the proprietor’s planning horizon and makes foreign investment more risky.

To elucidate the meaning of political catastrophe, we offer the following examples. Commercial revolutions would always qualify as political catastrophes, because they have bad for foreign investors and curtail the ability of the overthrown elite to enjoy the benefits of power. An electoral defeat of a ruling party may or may not qualify. In stable democracies such as the US and Western Europe transfers of power involve shifts in political patronage, giving them some elements of criterion one. But these transfers typically have at most slight implications for foreign investors, so they would not qualify as political catastrophes. On the other hand, if Gennadi Zyuganov had defeated Boris Yeltsin in Russia’s presidential election of 1996, that would have been a clear case of political catastrophe achieved through democratic means.

In Hong Kong after the British transfer of power to the Chinese, there are various scenarios under which a political catastrophe could occur. For example, there is some chance that the island will experience a downward spiral of protest and repression. A possible result could be disenfranchisement of the current Hong Kong power structure (criterion one). However, a situation may or may not be a blow to foreign investors and, hence, a political catastrophe. Another scenario is that corrupt Chinese officials might, in effect, exact money and property from both Hong Kong and foreign business interests, leading to a general loss of confidence in the local economy. This would most likely constitute a political catastrophe.

Most of the peaceful revolutions that took place throughout Eastern Europe in 1989 would not be political catastrophes. They did cause a big turnover in the region’s power elite, although perhaps not quite to the extent that is commonly supposed. However, as a rule they were not all bad for foreign investors.13

The catastrophe probability in period t is given by

$$q_t = q(D_t) = e^{-D_t} \quad (2.2)$$

where $0 < q < 1$. The idea is that as domestic capital grows the number and the influence of people who have a stake in preventing a catastrophe grows and, therefore, the catastrophe probability decreases. This idea is very intuitive. As human capital, physical infrastructure and market infrastructure grow, the number of people with high earning power under the current regime also grows. These people

13Note that political catastrophe, as we define it, does not necessarily entail revolution, although revolutions often do cause political catastrophes. As the more than powerful and democratic transfers of power can satisfy our definition.
2.3. Foreign Investment

In the small open economy framework of the model, foreign investors pour capital into or take capital out of the economy every period until the risk-adjusted rate of return, \(r_s \), is equal to a fixed and riskless world rate of return \(r^* \). For simplicity, we assume that investors are risk neutral and that the only risk in each period is the possibility of political catastrophe, in which case the rate of return is zero. If there is no catastrophe, then \(r_s \) equals the marginal product of foreign capital, \(\alpha P_s^{-1}D_t^{-\alpha} \). Therefore investors demanding an expected return of \(r^* \) set \(r_s = \left(\frac{1 - \alpha D_t}{r^*} \right) \alpha P_s^{-1}D_t^{-\alpha} \) so that foreign investment is decreasing in instability and the riskless rate, and increasing in the level of domestic capital:

\[
F_t = \left(\frac{1 - \alpha D_t}{r^*} \right) \alpha \frac{P_s^{-1}D_t^{-\alpha}}{D_t} = \left(\frac{1 - \alpha D_t}{r^*} \right) \alpha P_s^{-1}D_t^{-\alpha}
\]

(2.3)

2.4. The Rate of Return on Domestic Capital

Domestic capital earns a marginal product, so its rate of return, \(w_D \), is

\[
w_D = w \left(\frac{g(D_t)}{D_t} \right) = \frac{(1 - \alpha) \left(\frac{D_t}{1 - \alpha} \right)^{\frac{1}{1-\alpha}}} {D_t^{1-\alpha}}
\]

(2.4)

Thus, gross domestic earnings are \(w_D D_t \) and are decreasing in instability and the riskless rate.

2.5. Domestic Capital Development

Let \(I_t > 0 \) denote investment in domestic capital in period \(t \). The difference equation governing domestic capital evolution is

\[
D_t+1 = (1 - \delta) D_t + \gamma I_t
\]

(2.5)

where \(0 \leq \delta \leq 1 \) is the rate of decay and \(\gamma > 0 \) parameterizes the production function for turning output into domestic capital. This formulation builds some persistence into the domestic capital stock while requiring investment if the stock is to be maintained or increased.

2.6. Objective of the Policymaker

As noted above, our policymaker is a proprietary government that is concerned only with the portion of domestic consumption that it takes in every period up to the catastrophe point—i.e., if one occurs. Total output in period \(t \) satisfies (using Euler’s theorem) \(P_t^{\beta + 1} = g(D_t) + w_D D_t \), but \(\gamma I_t \) is taken out of the country by foreign investors and does not contribute to domestic welfare. Of the remaining \(w_D D_t \), \(I_t \) is invested in domestic capital development and is not consumed. The policymaker chooses the split of output between consumption and investment, but not the function of consumption that he gets to appropriate. Aggregate consumption, \(C_t \), is therefore

\[
C_t = w_D D_t - I_t
\]

(2.6)

with the proprietor’s share being \(\lambda C_t \), where \(0 < \lambda < 1 \).

A fundamental feature of this model is that the proprietor receives utility only if political catastrophe does not occur in period \(t \). If political catastrophe occurs then the proprietor’s utility is 0 in perpetuity. Since the model allows for growth, we use isocost utility to represent the instantaneous utility function for the proprietor and planner. Assuming a discount factor of \(0 < \beta < 1 \) and subject to equations 2.1 – 2.6, the proprietor’s problem can be written as

\[
\max_{C_t} E \sum_{t=0}^{\infty} \beta^t U(C_t)
\]

(2.7)

1 Although for convenience we model the proprietor as collecting a flat tax or rent, our consumption, our results are robust to any “talking function” that is increasing in aggregate consumption.
where τ is a random variable with range $\{1, 2, 3, \ldots\}$ giving the stochastic and endogenous time when the catastrophe occurs. Since the solution to the above problem is unchanged for any monotonic (weakly) increasing transformation of the maximand, we can solve the problem

$$\max_{(C_i, \tau)} \sum_{i=0}^{\infty} \beta^i U(C_i)$$

(2.8)

to get the planner's solution.\footnote{In the case of log utility, which we use in our computer simulations, $U(C_i) = \ln(1 + C_i)$, or more generally for CRRA utility, $U(C_i) = \left(\frac{C_i}{C_i^\gamma} \right)^{1-\gamma}$, $\frac{\partial U(C_i)}{\partial C_i} = \frac{\gamma C_i^\gamma - 1}{C_i^{\gamma+1}}$, and so eqn $(2.8) = \arg \max_{(C_i, \tau)} U(C_i)$. For other instantaneous utility functions we would have to distinguish between the function in (2.7) and that in (2.8) but we could still use the most general methods.\footnote{We have revealed a further divergence between social planner and planner by assuming the planner always uses a fixed function and has instantaneous utility (see the previous footnote). Under these conditions there is no difference between the planner's instantaneous utility function and that of the social planner.}} Note that the solution to the problem is a fixed sequence $\{C_i, \tau\}_{i=0}^{\infty}$ which represents consumption up to the point of catastrophe, (if it occurs). After a catastrophe, the planner's choices are irrelevant, since he will not be in power.

Next, as a basis for comparison, we consider the problem of a benevolent social planner. This problem coincides with the planner's problem, but with one key difference: the social planner does not view political catastrophe as terminating positive utility. The difference between the criteria of the social planner and the planner is that the planner weighs a given future period's utility by the probability of avoiding catastrophe up to that point, while the social planner takes into account the path of the economy after catastrophe.\footnote{We have revealed a further divergence between social planner and planner by assuming the planner always uses a fixed function and has instantaneous utility (see the previous footnote). Under these conditions there is no difference between the planner's instantaneous utility function and that of the social planner.} After a political upheaval, the economy continues on with different leadership but still provides utility to the population. The planner's problem is thus given by

$$\max_{(C_i, \tau)} \sum_{i=0}^{\infty} \beta^i U(C_i)$$

(2.9)

The difference between (2.8) and (2.9) is that the sum in the former runs from 0 to τ while that in the latter runs with certainty to i. As we show below, the possibility of political catastrophe complicates the optima, policy of the planner, including too little or too much investment relative to that chosen by a social planner.

2.7. Dynamic Programming Formulation

Equation (2.8) and (2.9) show most clearly the mathematical difference between the problems of the planner and social planner. The Bellman equation for the planner's problem, using equations (2.4) and (2.8), is

$$V(D) = \max_{\alpha \in \{\alpha\}} U(C) + \beta \left[1 - q \left(\beta (1 - \delta) D + \gamma I \right) \right] V((1 - \delta) D + \gamma I)$$

(2.10)

Equation (2.10) just says that the value to a planner of a given level of domestic capital, having avoided catastrophe this period, is the utility of consumption plus the value of the resultant domestic capital next period discounted by β and the probability of avoiding catastrophe. It is well known that this formulation is equivalent to (2.8).

Similarly, the Bellman equation is social planner is

$$V(D) = \max_{\alpha \in \{\alpha\}} U(C) + \beta V((1 - \delta) D + \gamma I)$$

(2.11)

2.8. Consumption Based Instability

The development of the model with consumption-based instability is parallel to that shown for domestic capital-based instability. All differences stem from the alternative formulation of the catastrophe function

$$\phi = \phi(C_i, \tau) = e^{-\beta C_i}$$

(2.12)

which assumes that the probability of catastrophe in period i depends on the consumption in period $i - 1$ and where $0 < \delta < \infty$. This leads to Bellman equations for the planner

$$V(D) = \max_{\alpha \in \{\alpha\}} U(C) + \beta \left(1 - q \left(C \right) \right) V((1 - \delta) D + \gamma I)$$

(2.13)

and planner

$$V(D) = \max_{\alpha \in \{\alpha\}} U(C) + \beta V((1 - \delta) D + \gamma I)$$

(2.14)

which, as in the case of domestic capital-based instability, share the difference that the planner discounts future utility by the probability of political catastrophe whereas the planner does not.
3. Results

3.1. The Basic Approach

The problem is too complicated to yield an analytical solution. However, we wrote a
Caux program that rapidly returns numerical solutions for optimal policy for
the proprietor and social planner for any set of parameter values. The results in
this section are based on numerical analysis using these programs. The baseline
parameters used for simulations are given in Table 1.34

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>5</td>
</tr>
<tr>
<td>β</td>
<td>1</td>
</tr>
<tr>
<td>γ</td>
<td>-1</td>
</tr>
<tr>
<td>δ</td>
<td>3</td>
</tr>
<tr>
<td>η</td>
<td>0</td>
</tr>
<tr>
<td>σ</td>
<td>0</td>
</tr>
</tbody>
</table>

3.2. Dependence on Initial Domestic Capital-Bifurcation

In this subsection and the next we consider the proprietor’s behavior under both
domestic capital-based and consumption-based instability. The following figures
display our main results: the dependence of domestic capital paths on initial
domestic capital. Whether the economy grows or shrinks depends on which
side of the bifurcation point its initial level of domestic capital lies.

Result 1. For an extremely wide range of parameter values and under both do-
meric capital-based and consumption-based instability there is a bifurcation
point for domestic capital in the solution to the proprietor’s problem. That
is, if initial domestic capital begins above some level of D, then it will always
increase, but if domestic capital begins below D it will always decrease.

34) Some of our results are dependent on the use of this particular parameter set and are relevant
to an extremely broad range of parameters including all those plausible for the parameters for
which there are empirical estimates.

Figure 3.1:

Figure 3.1 demonstrates the bifurcation phenomenon in the case of domes-
tic capital-based instability while figure 3.2 does the same for consumption-based
instability. When initial domestic capital is just above the bifurcation point the
domestic capital stock is monotonically increasing and when it is just below bi-
furcation domestic capital stock is monotonically decreasing. In fact, we get in-
creasing paths for any initial condition above the bifurcation point and decreasing
paths for initial conditions below the bifurcation point. This bifurcation in the
inital domestic capital stock holds for a very wide range of parameter values.

The main reason for this behavior is described by the following mechanism. If
initial domestic capital is low, then foreign investors face significant risk—thereby
making foreign capital scarce. Building up domestic capital only diminishes in-
vester risk slightly in the short run, and thus the present value of the return on
increasing domestic capital is low. It is therefore better for the proprietor to plun-
der resources while allowing domestic capital to deteriorate. On the other hand,
if initial domestic capital is high then foreign capital flows more freely into the
economy and is highly responsive to domestic capital improvements. In this case,
the proprietor’s strategy is to restrain his plundering in exchange for increasing
3.3. Bifurcation Sensitivity and Parameter Choice

It is valuable to study the movement of the bifurcation point as the underlying parameters of the model vary. Our sensitivity analysis yields the following results.

Result 2. Under both domestic capital-based and consumption-based instability, the bifurcation point for the proprietor is increasing in the risk-free rate, r^*, and depreciation, d, but decreasing in stabilization potential, δ, efficiency of investment in domestic capital, γ, and the discount rate, β.

The figures below are drawn for the case of domestic capital-based instability and are qualitatively identical to those for a proprietary economy with consumption-based instability.

These relationships are intuitive. For example, as the risk-free interest rate, r^*, increases, foreign capital flows less freely, and as a consequence accumulating domestic capital loses its attractiveness. Thus, for positive growth to be optimal, a higher domestic capital threshold must be crossed. Similarly, increased stabilization potential, δ, means greater stability for any given level of domestic capital, lowering the threshold for positive growth. As time preference declines (β rises), the proprietor is less myopic and the bifurcation point falls. Higher efficiency of investment, γ, or a lower depreciation rate, d, increase the productivity of domestic capital investments, again lowering the growth threshold.

3.4. The Proprietor's Policy Function

Figure 3.8 shows a typical policy function when instability is domestic capital based, graphing consumption as a function of domestic capital. The interacting
point is the non-monotonicity of consumption as a function of domestic capital (hence income); consumption first rises, then falls, and then rises again. The reason for this behavior is closely connected with the above discussion of bifurcation. If domestic capital is below the bifurcation point, then the optimal choice is to allow it to deteriorate. This implies that increases in domestic capital that does not push the economy above the bifurcation point simply lead to higher current consumption. When the bifurcation point is crossed, however, the basic plan shifts from plundering the economy and extinguishing domestic capital to building it up. There is then an interval of higher domestic capital levels over which improved conditions for investing in domestic capital induce the policy-maker to cut the consumption rate. The bifurcation point for an economy occurs at the beginning of this interval of declining consumption. At even higher levels of domestic capital, consumption once again begins to increase. Note that this is consistent with the experience of the Asian tigers discussed above (see footnote 12).

Result 2. For an extremely wide range of parameter values and under both domestic capital-based and consumption-based instability, the rate of consumption as a function of domestic capital increases for low values of D, then decreases, and then increases again.

Figure 3.9 shows the proprietor’s policy functions for both domestic capital-based and consumption-based instability for a typical parameter set. Note that for consumption-based instability the bifurcation point is higher and the decline in consumption at bifurcation less pronounced than for domestic capital-based instability. This contrast is typical over the entire range of parameters tested. Both the higher bifurcation point and the less pronounced decline in consumption at bifurcation are explained as follows. In the consumption-based economy, the proprietor must raise consumption to lower instability. But this reduces domestic investment (equation 2.6), which renders continued high consumption untenable. Thus, the proprietor requires a higher level of domestic capital before he can “afford” to undertake both stabilization and growth. Even above bifurcation, the
proprietor must be wary of reducing consumption too much lest he incite instability substantially and drive away foreign investment.

Result 4. For an extremely wide range of parameter values the bifurcation point is lower, and the decrease in consumption above bifurcation more pronounced, when political instability is domestic capital-based rather than consumption-based.

A convergence result is that as \(\theta \) rises, increasing the stabilization potential, the bifurcation points of the two types of proprietorships converge, as shown in figure 3.10. As \(\theta \) rises, the level of stability required for the proprietor to choose growth is achieved with lower consumption (less domestic capital) in the case of the consumption-based instability (domestic capital-based instability), but the consumption-based proprietor receives an added inducement to embark on the growth path. The fact that the consumption-based proprietor can “get away with” lower consumption allows more domestic investment, which leads to a wealthier
3.5. The Proprietary versus the Social Planner

Figure 3.11 shows that when the proprietary economy has an initial domestic capital level above its bifurcation point, it achieves a higher growth rate than the socially-planned economy. The intuition behind this result is that only the proprietary cares about the probability of survival, which is increased by heavy investment in domestic capital (equation 2.2). Thus, the proprietary has a unique incentive to push for a fast growth rate. The result is that proprietary economies, when they expand, grow faster than is optimal. This can be anticipated by noting the difference between the shapes of typical proprietary's and planners' policy functions as shown in figure 3.12. Above bifurcation consumption in the proprietary economy falls to a level below that in the planner's economy, leading to faster growth. For high levels of domestic capital, policies of the proprietor and social planner converge because instability is extremely low (equations 2.10 and 2.11 demonstrate this mathematically). Indeed, when the threat of political overthrow is tiny, the proprietor and social planner become indistinguishable.

The above result carries through for the case of consumption-based instability, but with somewhat different intuition. Above bifurcation, the proprietor must nurture domestic capital so as to expand national income and consumption. Thus increasing domestic capital indirectly lowers instability.

Result 3. For an extremely wide range of parameter values, and under both domestic capital-based and consumption-based instability, proprietary economies that grow do so faster than the equivalent socially-planned economies.

For an extremely wide range of parameter sets, including all reasonable ones tested, there is always a range of initial capital stock over which the proprietor will choose to run down the capital stock when growth would be optimal. This occurs over the region where consumption in the proprietary economy is much greater.
stirrich faster than the equivalent socialist economies when shrinkage is optimal.

4. Conclusion

Our analysis suggests that proprietary rule engenders conditions that lead countries to play out their futures in one of two contrasting scenarios. On the one hand, they have the potential to break out of the poverty trap and achieve (sub-optimally) rapid growth—as seen, for example, in South Korea and Singapore. On the other hand, myopically self-interested leadership can send countries without the combination of sufficient political stability and domestic capital on a downward spiral of economic deterioration. Such countries eventually require the intervention of the international community and may become focal points for global instability (Somalia, Haiti, and the countries of the former Yugoslavia and North Korea come to mind as recent examples).

Predicting the effects of foreign aid and policy prescriptions on developing countries requires modelling that takes into account the realities of proprietary governance. The history of the success of foreign aid programs has been mixed at best. This paper shows that part of the reason for this is that the choices made by proprietary governments facing instability tend to vary from those predicted by standard growth models in which a benevolent social planner makes decisions. With this in mind we conclude with some brief observations that relate policy and proprietary governance.

The natural policy question that arises is that of how to push an economy over its bifurcation point—that is, what kind of policy can lead to an economic takeoff? Of course, the most obvious intervention is to directly increase domestic capital. Many World Bank programs can be viewed precisely in these terms. The theme that flows from this paper is the importance of implementing a critical mass of domestic capital programs that push the economy past the take-off point.

Intervention of another sort that is natural in our framework and is possibly more interesting is to increase, perhaps temporarily, the stabilization potential. In fact, one can view IMF programs in these terms. Their plans provide financing that gives governments room to implement difficult measures that can stabilize the environment in the medium term while not significantly sacrificing short-term stability. Moreover, the IMF stamp of approval is taken by international capital markets to certify that the risk of investing in the economy is now considered manageable even though the country's domestic capital has not improved. The model can capture this as a decrease in the probability of political catastrophe, q, without increase in domestic capital, something that can only be accomplished by increasing the stabilization potential. It is not hard to imagine scenarios under which an increase in stabilization potential is sufficient to induce takeoff which can then be sustained on the basis of a significant improved domestic capital stock, even after stabilization potential reverts to its old level at some future date.

The existence of bifurcation in the proprietary economy implies that resources devoted to assisting developing countries to "takeoff," or enter a virtuous cycle of sustained growth, should be concentrated on a few most promising candidate countries rather than dispersed widely. This paper shows that if a proprietary regime does not receive sufficient impetus in the form of either domestic capital or lower instability, it will simply consume whatever aid it does receive as it runs down the economy. If the bifurcation point can be bridged, then the proprietary regime will "get with the program" and promote a growth and stabilization plan. Since a temporary consumption subsidy is probably not what most aid organizations have in mind, and is certainly not what most donor countries believe they are paying for, the issue of bifurcation has significant normative impact.

One last point is that we can expect austerity measures required by aid organizations to be resisted by the proprietors if he perceives that development aid will be insufficient to put the economy above the bifurcation point. Thus should hold whether instability is consumption-based or domestic capital-based.

[1] Bibliography

