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Constrained optimization 

The idea of constrained optimisation is that the choice of one variable often 

affects the amount of another variable that can be used 

 

Eg if a firm employs more labour, this may affect the amount of capital it 

can afford to rent if it is restricted (constrained) by how much it can spend 

on inputs 

 

when a consumer maximizes utility (the ‘objective function’), x and y must 
be affordable – income provides the constraint. 

 

When a government sets expenditure levels it faces constraints set by its 
income from taxes 

 

Any optimal (eg profit maximising, cost minimising) quantities obtained 

when under a constraint may be different from the quantities that might be 

achieved if the agent were unconstrained 
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Binding and non-binding constraints 

A constraint is binding if at the optimum the constraint function holds with 

equality (sometimes called an equality constraint) giving a boundary solution 

somewhere on the constraint itself 

Otherwise the constraint is non-binding or slack (sometimes called an inequality 

constraint) 

 

If the constraint is binding we can use the Lagrangean technique (see later) 

 

Often we can use our economic understanding to tell us if a constraint is binding 

– Example: a non-satiated consumer will always spend all her income so 

the budget constraint will be satisfied with equality 

 

But in general we do not know whether a constraint will be binding ( = , > or < ) 

 

In this case we use a technique which is related to the Lagrangean,  but which is 

slightly more general called linear programming, or in the case of non-linear 

inequality constraints, non-linear programming or Kuhn-Tucker programming 

after its main inventors 
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Objectives and constraints - example 

A firm chooses output x to maximize a profit function π = -x2 + 10x - 6  

Because of a staff shortage, it cannot produce an output higher than x = 4 

What are the objective and constraint functions? 

  

 The objective function: π = -x2 + 10x-6 

  

 The constraint: x ≤ 4 or 0 ≤ 4 – x 

 

 

x 

π 

4 
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A firm chooses output x to maximize a profit function π = -x2 + 10x-6.  

It cannot produce an output higher than x=4.  

 

The objective function: π = -x2 + 10x - 6 

The constraint: x ≤ 4 or 0 ≤ 4 – x 

 

Note that without the constraint the optimum is x = 5 

So the constraint is binding  (but a constraint of, say, x ≤ 6 would not be) 

– In general it is not always easy to see this 

x 

π 

5 4 
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Constrained optimization with two variables and one 

constraint  

The problem is: 

max
𝑥,𝑦

𝑓(𝑥, 𝑦) 

𝑠. 𝑡 𝑔 𝑥, 𝑦 = 𝑐 

 

To get the solution we have to write the Lagrangean: 

𝐿(𝑥, 𝑦, 𝜆)  =   𝑓 (𝑥, 𝑦)  −  𝜆(𝑔(𝑥, 𝑦)  −  𝑐) 

where 𝜆 is a new variable 

The candidates to the solution are the stationary points of the lagrangean, i.e. all 

points that satisfy the following system of equations: 

 

 

𝑓1 𝑥, 𝑦 − 𝜆𝑔1 𝑥, 𝑦 = 0 

𝑓2 𝑥, 𝑦 − 𝜆𝑔2 𝑥, 𝑦 = 0

𝑔 𝑥, 𝑦 = 𝑐 

 



𝑓1 𝑥∗, 𝑦∗

𝑓2 𝑥∗, 𝑦∗
=
𝑔1 𝑥∗, 𝑦∗

𝑔2 𝑥∗, 𝑦∗
 

𝑓1 𝑥∗, 𝑦∗

𝑔1 𝑥∗, 𝑦∗
=
𝑓2 𝑥∗, 𝑦∗

𝑔2 𝑥∗, 𝑦∗
 



𝑓1 𝑥∗, 𝑦∗

𝑔1 𝑥∗, 𝑦∗
=
𝑓2 𝑥∗, 𝑦∗

𝑔2 𝑥∗, 𝑦∗
= 𝜆 

Using 
𝑓1 𝑥∗,𝑦∗

𝑔1 𝑥∗,𝑦∗
= 𝜆 we get   𝑓1 𝑥∗, 𝑦∗ − 𝜆𝑔1 𝑥∗, 𝑦∗ = 0 

Using 
𝑓2 𝑥∗,𝑦∗

𝑔2 𝑥∗,𝑦∗
= 𝜆 we get 𝑓2 𝑥∗, 𝑦∗ − 𝜆𝑔2 𝑥∗, 𝑦∗ = 0 

Moreover the solution has to satisfy the constraint 𝑔 𝑥∗, 𝑦∗ = 𝑐 

Then the solution has to satisfy the following three equations: 

𝑓1 𝑥∗, 𝑦∗ − 𝜆𝑔1 𝑥∗, 𝑦∗ = 0 

𝑓2 𝑥∗, 𝑦∗ − 𝜆𝑔2 𝑥∗, 𝑦∗ = 0 

𝑔 𝑥∗, 𝑦∗ = 𝑐 

These equations can be viewed as the the derivatives of the Lagrangean  

𝐿(𝑥, 𝑦, 𝜆)  =   𝑓 (𝑥, 𝑦)  −  𝜆(𝑔(𝑥, 𝑦)  −  𝑐) 

with respect to 𝑥, 𝑦 and 𝜆 to be zero 

The first two are know as the first order conditions 

 

 



Let 

• f  and g be continuously differentiable functions of two variables defined on the set S,  

• c be a number 

• suppose that (𝑥∗, 𝑦∗) is an interior point of S that solves the problem  

𝑚𝑎𝑥𝑥, 𝑦
  𝑓 (𝑥, 𝑦) subject to 𝑔(𝑥, 𝑦)  =  𝑐  

Suppose also that 

𝑒𝑖𝑡ℎ𝑒𝑟 𝑔1 𝑥
∗, 𝑦∗ ≠  0 𝑜𝑟 𝑔2(𝑥

∗, 𝑦∗)  ≠  0.  

Then there is a unique number 𝜆  such that (𝑥∗, 𝑦∗) is a stationary point of the 

Lagrangean  

𝐿(𝑥, 𝑦)  =   𝑓 (𝑥, 𝑦)  −  𝜆(𝑔(𝑥, 𝑦)  −  𝑐) 

That is, (𝑥∗, 𝑦∗) satisfies the first-order conditions.  

𝐿1(𝑥
∗, 𝑦∗) =   𝑓1(𝑥

∗, 𝑦∗) −  𝜆𝑔1(𝑥
∗, 𝑦∗) =  0  

𝐿2(𝑥
∗, 𝑦∗) = 𝑓2(𝑥

∗, 𝑦∗) −  𝜆𝑔2(𝑥
∗, 𝑦∗) =  0. 

ans 𝑔(𝑥∗, 𝑦∗) =  𝑐.  



Procedure for the solution 

1. Find all stationary points of the Lagrangean 

2. Find all points (x, y) that satisfy 𝑔1 𝑥, 𝑦 =  0 , 𝑔2 𝑥, 𝑦 = 0 and 𝑔 𝑥, 𝑦 = 𝑐 

3. If the set S has boundary points, find all boundary points 𝑥, 𝑦  that satisfy 𝑔 𝑥, 𝑦 = 𝑐 

4. The points you have found at which 𝑓 𝑥, 𝑦  is largest are the maximizers of 𝑓(𝑥, 𝑦) 

Example 

max
𝑥,𝑦

𝑥𝑎𝑦𝑏  𝑠. 𝑡 𝑥 + 𝑦 = 10 

where 𝑎, 𝑏 > 0 and 𝑥𝑎𝑦𝑏 is defined on the set of points (𝑥, 𝑦) with 𝑥 ≥ 0 𝑦 ≥ 0. 

𝐿 𝑥, 𝑦, 𝜆 = 𝑥𝑎𝑦𝑏 − 𝜆 𝑥 + 𝑦 − 10  

1. We solve:  𝑎𝑥𝑎−1𝑦𝑏 − 𝜆 = 0  

  𝑏𝑥𝑎𝑦𝑏−1 − 𝜆 = 0 

  𝑥 + 𝑦 = 10 

 

  𝑥 =
10𝑎

𝑎+𝑏
     𝑦 =

10𝑏

𝑎+𝑏
    𝜆 =

𝑎𝑎𝑏𝑏

𝑎+𝑏 𝑎+𝑏−1 ∙ 10
𝑎+𝑏−1 

𝑥𝑎𝑦𝑏 =
10𝑎

𝑎 + 𝑏

𝑎
10𝑏

𝑎 + 𝑏

𝑏

> 0 
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2. 𝑔1 𝑥, 𝑦 = 1 , 𝑔2 𝑥, 𝑦 = 1 then no values s.t. 𝑔1 𝑥, 𝑦 =  0 , 𝑔2 𝑥, 𝑦 = 0 

3. The boundary points of the set on which the objective function is defined 

is the set of points (𝑥, 𝑦) with either 𝑥 = 0  or 𝑦 = 0.  At every such point 

the value of objectve function is 0 

4. Then the solution of the problem is 𝑥 =
10𝑎

𝑎+𝑏
     𝑦 =

10𝑏

𝑎+𝑏
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Interpretation of λ 

 𝑓∗′(𝑐)  =  𝜆∗(𝑐)  

the value of the Lagrange multiplier at the solution of the problem is equal 

to the rate of change in the maximal value of the objective function as the 

constraint is relaxed.  

Example: max
𝑥

𝑥2 𝑠. 𝑡 𝑥 = 𝑐 

solution is 𝑥 = 𝑐 so the maximized value of the objective function is 𝑐2. 

Its derivative respect to 𝑐 is 2𝑐 

 

Now consider the Lagrangean 

𝐿 𝑥 = 𝑥2− 𝜆(𝑥 − 𝑐) 

The FOC is 2𝑥 − 𝜆 = 0. 

Then 𝑥 = 𝑐 and 𝜆 = 2𝑐 satisfy FOC and the constraint.  Note that 𝜆 is equal 

to the derivative of the maximized value of the fct w.r.t. 𝑐 



Conditions under which a stationary point is a local optimum 

max
𝑥,𝑦

𝑓(𝑥, 𝑦) 

𝑠. 𝑡 𝑔 𝑥, 𝑦 = 𝑐 

 
𝐿(𝑥, 𝑦)  =   𝑓 (𝑥, 𝑦)  −  𝜆(𝑔(𝑥, 𝑦)  −  𝑐) 

 

Borderd Hessian of the Lagrangean 

𝐻𝑏 𝑥, 𝑦, 𝜆 =

0 𝑔1 (𝑥, 𝑦) 𝑔2 (𝑥, 𝑦)

𝑔1 (𝑥, 𝑦) 𝑓11 𝑥, 𝑦 − 𝜆𝑔11 (𝑥, 𝑦) 𝑓12 𝑥, 𝑦 − 𝜆𝑔12 (𝑥, 𝑦)

𝑔2 (𝑥, 𝑦) 𝑓21 𝑥, 𝑦 − 𝜆𝑔21 (𝑥, 𝑦) 𝑓22 𝑥, 𝑦 − 𝜆𝑔22 (𝑥, 𝑦)
 



Suppose that it exists a value 𝜆∗ such that 𝑥∗, 𝑦∗  is a stationary point of the 

Lagrangean. 

To check if it is a local maximum 

1) Compute the bordered Hessian at the values 𝑥∗, 𝑦∗, 𝜆∗  , i.e. 𝐻𝑏 𝑥∗, 𝑦∗, 𝜆∗  

2) Compute its determinant, i.e.  𝐷 𝑥∗, 𝑦∗, 𝜆∗ = |𝐻𝑏 𝑥∗, 𝑦∗, 𝜆∗ | 

3) If 𝐷 𝑥∗, 𝑦∗, 𝜆∗ > 0 𝑡ℎ𝑒𝑛  𝑥∗, 𝑦∗  is a local maximizer 

 

Note, if 𝐷 𝑥∗, 𝑦∗, 𝜆∗ < 0 𝑡ℎ𝑒𝑛  𝑥∗, 𝑦∗  is a local minimizer 
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Example 

max
𝑥,𝑦

𝑥3𝑦  𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑥 +  𝑦 =  6. 

We simplify the problem using a log transformation 

max
𝑥,𝑦

3 ln 𝑥 + ln 𝑦  𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑥 +  𝑦 =  6. 

𝐿 𝑥, 𝑦 = 3 ln 𝑥 + ln 𝑦 −  𝜆(𝑥 + 𝑦 − 6) 

FOC are   
3

𝑥
− 𝜆 = 0,  

1

𝑦
− 𝜆 = 0 

𝑥 +  𝑦 =  6 

The solution is 𝑥 = 4.5, 𝑦 = 1.5, 𝜆 =
2

3
 

Borderd Hessian of the Lagrangean is 

𝐻𝑏 𝑥, 𝑦, 𝜆 =

0 1 1

1 −
3

𝑥2
0

1 0 −
1

𝑦2

 

The determinant is 
3

𝑥2
+

1

𝑦2
> 0, then the solution is a local maxmizer 
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Conditions under which a stationary point is a global optimum 

• Suppose that f and g are continuously differentiable functions defined on an 

open convex subset S of two-dimensional space and 

• suppose that there exists a number λ* such that (x*, y*) is an interior point of 

S that is a stationary point of the Lagrangean  

 

L(x, y) =  f (x, y) − λ*(g(x, y) − c). 

 

• Suppose further that g(x*, y*) = c.  

 

• Then if L is concave then (x*, y*) solves the problem  

 

maxx,y  f (x, y) subject to g(x, y) = c  

 



Example 

Consider the previous example 

max
𝑥,𝑦

𝑥3𝑦  𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑥 +  𝑦 =  6 

We found that the solution of the FOC 𝑥 = 4.5, 𝑦 = 1.5, 𝜆 =
2

3
 is a local 

minimizer. 

Is it a global maxmizer? 

For a global maximizer we need that lagrangean is concave 

𝐿 𝑥, 𝑦 = 3 ln 𝑥 + ln 𝑦 −  𝜆(𝑥 + 𝑦 − 6) 

Given that constraint is linear we need to check the objective function 

The hessian of the objective function is 

−
3

𝑥2
0

0 −
1

𝑦2

 

𝑀1 = −
3

𝑥2
< 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 > 0 

𝑀2 =
3

𝑥2
1

𝑦2
> 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥, 𝑦 > 0 

Then the hessian is positive definite, so the objective functionis strictly 

concave, and  the point 𝑥 = 4.5, 𝑦 = 1.5 is a global maximum. 
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Optimization with equality constraints: n variables, m constraints 

Let  f  and g1, ..., gm be continuously differentiable functions of n variables 

defined on the set S,  

let cj for j = 1, ..., m be numbers, and suppose that x* is an interior point of 

S that solves the problem: 

maxx  f (x) subject to gj(x) = cj for j = 1,...,m     

Suppose also that  (∂gj/∂xi)(x*) 0  for all I 

 

Then there are unique numbers λ1, ..., λm such that x* is a stationary point 

of the Lagrangean function L defined by  

L(x) =  f (x) − ∑j=1
mλj(gj(x) − cj).  

That is, x* satisfies the first-order conditions:  

L'i(x*) =  f i'(x*) − ∑j=1
mλj(∂gj/∂xi)(x*) = 0 for i = 1,...,n. 

In addition, gj(x*) = cj for j = 1, ..., m.  

 



Conditions under which necessary conditions are sufficient 

Suppose that  f  and gj for j = 1, ..., m are continuously differentiable 

functions defined on an open convex subset S of n-dimensional space 

and let x* ∈ S be an interior stationary point of the Lagrangean: 

L(x) =  f (x) − ∑j=1
mλ*j(gj(x) − cj). 

Suppose further that gj(x*) = cj for j = 1, ..., m.  

Then if L is concave then x* solves the constrained maximization problem  

 



Interpretation of λ 

Consider the problem  

maxx  f (x) subject to gj(x) = cj for j = 1,...,m, 

Let x*(c) be the solution of this problem, where c is the vector (c1, ..., cm) and let  f *(c) 

=  f (x*(c)). 

Then we have   

f *j'(c) = λj(c) for j = 1,...,m, 

where λj is the value of the Lagrange multiplier on the jth constraint at the solution of 

the problem.  

The value of the Lagrange multiplier on the jth constraint at the solution of the 

problem is equal to the rate of change in the maximal value of the objective 

function as the jth constraint is relaxed.  

If the jth constraint arises because of a limit on the amount of some resource, then we 

refer to λj(c) as the shadow price of the jth resource. 



Quasi-convex functions 

 f(x″) = f(λx + (1-λ)x‘ ) ≤ max(f(x), f(x’) )   quasi convex 

 f(x″) = f(λx + (1-λ)x‘ ) < max(f(x), f(x’) )   strictly quasi convex 

 

it is always true that a function evaluated at a point that lies on a line between 

any 2 points does not give a higher value than either of the 2 points  (rather 

than a weighted average of the 2 points) 

 

Note that a convex function is also quasi-convex 

 

But  the opposite is not true 
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 f(x″) = f(λx + (1-λ)x’ ) ≤ max(f(x), f(x’) ) 

 

Note that a convex function is also quasi-convex 

 

The bottom left picture shows that the opposite is not true 

 

y 

y 

y 
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Quasi-concave functions 

  f(x″) = f(λx + (1-λ)x‘ ) ≥ min(f(x), f(x’) )   quasi concave 

  f(x″) = f(λx + (1-λ)x‘ ) > min(f(x), f(x’) )    strictly quasi concave 

it is always true that  function evaluated at a point that lies on a line between any 2 

points gives a higher value than either of the 2 points 

A concave function is also quasi-concave, but  the opposite is not true 

 

If f(x) > f(x’) and   f(λx + (1-λ)x‘ ) ≥ f(x’)  te function is explicitly quasi concave 

 

 

 

 

23 



y 

y 

y 
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The importance of concavity and quasi-concavity 

Consider the problem 

maxx  f (x) subject to gj(x) = cj for j = 1,...,m    

and let 𝑥∗ be a stationary point of the lagrangean  

If  

1. f(x) is explicitly quasi-concave 

2. The constrained set is convex 

3. then 𝑥∗ is a global maximum  

 

 

If  

1. f(x) is strictly quasi-concave 

2. The constrained set is convex 

3. then 𝑥∗ is the unique global maximum  
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A convex set, X, is such that for any two elements of the set, x and x’ any convex 

combination of them is also a member of the set. 

 

 

 

 

 

 

 

 

 

 

More formally, X is convex if for all x and x’ ε X, and 0 ≤λ≤1, x″ = λx + (1-λ)x‘ ε X. 

 

Sometimes X is described as strictly convex if for any 0 < λ <1, x″ is in the interior 

of X (i.e. not on the edges) 

 

e.g. convex but not strictly convex 

x 

x' 

Convex sets. 
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Convex sets. 

If, for any two points in the set S, the line segment connecting these two points lie 

entirely in S, then S is a convex set. 

 

U  

U(x)≥ U 

x1 

x2 

x1 

x2 p1x1+p2x2 ≤ m 
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Non-Convex sets. 

 

 

U  

U(x)≤ U 
x1 

x2 
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Exercise – which of these sets is convex? 

1. The set of real numbers. 

 

 

2.   

 

 

 

 

 

 

 

 

 

3.   
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A different definition of quasi concavity 

Let f be a multivariate function defined on the set S.  

f is quasi concave if, for any number a, the set of points for which f (x) ≥ a is convex. 

For any real number a, the set  

Pa = {x ∈ S: f (x) ≥ a} is called the upper level set of f for a.  

 

The multivariate function f defined on a convex set S is quasiconcave if every 

upper level set of f is convex. (That is, Pa = {x ∈ S: f (x) ≥ a} is convex for every 

value of a.)  
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Examples 

1. f (x, y) = x2 + y2.  

The upper level set of f for a is the set of pairs (x, y) such that x2 + y2 ≥ a.  

Thus for a > 0 it the set of point out of a disk of radius a, then the upper 

level set is not convex 

 

 

2. f (x, y) = −x2 − y2.  

The upper level set of f for a is the set of pairs (x, y) such that −x2 − y2 ≥ a, 

or x2 + y2 ≤ −a.  

Thus for a > 0 the upper level set Pa is empty 

for a < 0 it is the set of points inside a disk of radius a. 
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Checking quasi concavity 

To determine whether a twice-differentiable function is quasi concave or 

quasi convex, we can examine the determinants of the bordered 

Hessians of the function, defined as follows: 

𝐵 =

0 𝑓1 𝑥 𝑓2 𝑥 𝑓𝑛 𝑥

𝑓1 𝑥 𝑓11 𝑥 𝑓12 𝑥 𝑓1𝑛 𝑥

𝑓2 𝑥 𝑓21 𝑥 𝑓22 𝑥 𝑓2𝑛 𝑥

𝑓𝑛 𝑥 𝑓𝑛1 𝑥 𝑓𝑛2 𝑥 𝑓𝑛𝑛 𝑥

  

 

We have to compute the determinants of the leading principal minors 

|𝐵1| =
0 𝑓1 𝑥

𝑓1 𝑥 𝑓11 𝑥
, |𝐵2| =

0 𝑓1 𝑥 𝑓2 𝑥

𝑓1 𝑥 𝑓11 𝑥 𝑓12 𝑥

𝑓2 𝑥 𝑓21 𝑥 𝑓22 𝑥

,…………… 
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If |𝐵𝑥| are positive if x is even and negative if x is odd then f is quasi concave 

 

If |𝐵𝑥| are strictly positive if x is even and strictly negative if x is odd then f is 

strictly quasi concave 

 

If |𝐵𝑥| are negative  then f is quasi convex 

 

If |𝐵𝑥| are strictly  negative then f is strictly quasi convex 

 

for all x in the set where function f is defined 
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Envelope theorem: unconstrained problem 

Let  f(x,r)  be a continuously differentiable function where x is an n-vector of 

variables and r is a k-vector of parameters. 

The maximal value of the function is given by   f(x*(r), r)  

where x*(r) is the vector of variables x that maximize f and that are function of r. 

Note that we can write f(x*(r), r) as  f *(r)  

(because in this function only parameters appear) 

  

If the solution of the maximization problem is a continuously differentiable function 

of r  then:  

df ∗(r)  
d𝑟𝑖 

=
df (x, r)  

d𝑟𝑖 
 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒𝑑 𝑖𝑛 x*(r) 

 

the change in the maximal value of the function as a parameter changes is the 

change caused by the direct impact of the parameter on the function, holding 

the value of x fixed at its optimal value;  

the indirect effect, resulting from the change in the optimal value of x caused by a 

change in the parameter, is zero 

 



Example 

max𝑝 ln 𝑥 − 𝑐𝑥 

FOC is 
𝑝

𝑥
− 𝑐 = 0  

then 𝑥∗ =
𝑝

𝑐
  

and 𝑓∗ 𝑝, 𝑐 = 𝑝 ln
𝑝

𝑐
− 𝑝 

The effect of a change of parameter c on the maximized value is: 
𝑑𝑓∗ 𝑝, 𝑐

𝑑𝑐
= −

𝑝

𝑐
 

Consider the derivative of the objective function evaluated at the solution 𝑥∗ 
𝑑𝑝 ln 𝑥 − 𝑐𝑥

𝑑𝑐
= −𝑥 

Evaluating it in 𝑥∗ =
𝑝

𝑐
 we get −

𝑝

𝑐
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Envelope theorem: constrained problems 

Let  f(x,r)  be a continuously differentiable function where x is an n-vector of 

variables and r is a k-vector of parameters. 

The maximal value of the function is given by   f(x*(r), r)  

where x*(r) is the vector of variables x that maximize f and that are function of r. 

Note that we can write f(x*(r), r) as  f *(r)  

Then  

d𝑓∗(r)  

d𝑟𝑖 
=

dL (x, r)  

d𝑟𝑖 
evaluated at the solution x∗(r) 

 where the function L is the Lagrangean of the problem 



Example 

max
𝑥,𝑦

𝑥𝑦  𝑠. 𝑡 𝑥 + 𝑦 = 𝐵 

𝐿 𝑥, 𝑦, 𝜆 = 𝑥𝑦 − 𝜆 𝑥 + 𝑦 − 𝐵  

we solve:  𝑦 − 𝜆 = 0  

  𝑥 − 𝜆 = 0 

  𝑥 + 𝑦 = 𝐵 

then 𝑥∗ = 𝑦∗ = 𝜆∗ =
𝐵

2
  

and 𝑓∗ 𝐵 =
𝐵2

4
 

The effect of a change of parameter c on the maximized value is: 
𝑑𝑓∗ 𝐵

𝑑𝐵
=
𝐵

2
 

Consider the derivative of the Lagrangean evaluated at the solution 𝑥∗ 

𝑑 𝑥𝑦 − 𝜆 𝑥 + 𝑦 − 𝐵

𝑑𝐵
=
𝐵

2
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