1 Summary of Degree Structure

Full details about each programme of study, including the aims, learning outcomes to be achieved on completion, courses which make up the programme and any programme-specific regulations are set out in the programme specifications.

1.1 Degree Programmes

MOLECULAR BIO SCIENCE DEGREES
- Biochemistry
- Biomedical Sciences
- Medical Biochemistry
- Molecular Biology

ORGANISMAL BIO SCIENCE DEGREES
- Biology
- Ecology and the Environment
- Zoology

MOLECULAR BIO SCIENCE DEGREES

C700 Biochemistry provides a comprehensive coverage of the principles of biochemistry together with a range of more advanced course options dealing with a broad spectrum of modern and topical developments in animal, microbial and plant biochemistry and molecular biology. A good degree of flexibility is possible in the second and final years and you may also select up to one course unit from those offered by other departments if timetabling allows, and if agreed by the Heads of School/Department in SBS and in the host department.

B990 Biomedical Sciences. This degree programme focuses on understanding the biological basis of human disease and is primarily designed for students considering employment in biomedical research. The first year provides a core background in a range of subjects including biochemistry, physiology, cell biology, molecular biology and genetics. In the second and particularly the final year you focus on specialist medical subjects such as the neurosciences, fundamentals of disease diagnostics and the molecular basis of inherited disease.

C741 Medical Biochemistry emphasises the importance of biochemistry in medicine, particularly in relation to understanding the molecular basis of disease and how this can lead to the development of novel therapeutic strategies. In addition to the biochemistry core courses, you take core courses in physiology, cell biology and genetics in the first year and the medically-orientated options in the second and final years. These include biochemical aspects of immunology and neurobiology, the molecular basis of inherited disease and embryology.

C701 Molecular Biology emphasizes the essence of the molecular mechanisms that control life processes. A common first year of core units is followed by a selection of optional and additional core courses in molecular biology (including applied aspects of the subject) and biochemistry. In the final year, students take advanced level courses that focus on molecular biology, cell biology, molecular and medical microbiology, human molecular genetics and inherited diseases. You will also have
a choice from a selection of final year projects in either biomedical, environmental, microbial or plant sciences in which molecular biology approaches are used.

ORGANISMAL BIOENGINEERING DEGREES

C100 Biology provides a comprehensive coverage of most aspects of biology ranging from the physiological to the ecological. A common first year builds the necessary foundation for more specialist courses in the second and third year. These can be selected to maintain a broad-based degree or to concentrate on areas which are predominantly ecological, physiological, or organismal.

C150 Ecology and the Environment is the study of interactions between plants and animals and their environments. A common first year provides the necessary foundation for a selection of second and third year courses which cover diverse aspects of ecology including both terrestrial and aquatic ecosystems, conservation and behavioural ecology.

C300 Zoology places particular emphasis on the study of animals. Following a common first year which provides basic training in organismal, ecological and physiological aspects of biology, a range of options is available in the second and third years, which cover the diversity and evolution of animals, their adaptations to different life styles and habitats, how they function and their behaviour.
Courses Offered - School of Biological Sciences RHUL

All first year courses and BS3010 are one unit value. All other courses are half unit value.

<table>
<thead>
<tr>
<th>COURSE CODE</th>
<th>COURSE NAME</th>
<th>COORDINATOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Year</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BS1030</td>
<td>Principles of Molecular Bioscience</td>
<td>Dr J McEvoy</td>
</tr>
<tr>
<td>BS1040</td>
<td>The Diversity of Life</td>
<td>Dr D Morritt</td>
</tr>
<tr>
<td>BS1050</td>
<td>Ecology: Animal Behaviour to Environmental Conservation</td>
<td>Prof J Koricheva</td>
</tr>
<tr>
<td>BS1060</td>
<td>Living Systems: Animal and Plant Physiology</td>
<td>Dr J Beauchamp</td>
</tr>
<tr>
<td>BS1070</td>
<td>Cell Biology and Genetics</td>
<td>Dr P F Devlin</td>
</tr>
<tr>
<td>BS1090</td>
<td>Biochemistry: The Molecular Basis of Life</td>
<td>Dr W Lucchesi</td>
</tr>
<tr>
<td>Second Year</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BS2005</td>
<td>Microbiology</td>
<td>Dr S Dissanayeke</td>
</tr>
<tr>
<td>BS2010</td>
<td>Invertebrate Biology: Structure, Behaviour and Evolution</td>
<td>Prof M J F Brown</td>
</tr>
<tr>
<td>BS2020</td>
<td>Plant Life: from Genes to Environment</td>
<td>Dr E Lopez-Juez</td>
</tr>
<tr>
<td>BS2040</td>
<td>Cell Biology</td>
<td>Prof L Bögre</td>
</tr>
<tr>
<td>BS2050</td>
<td>Essential Human Physiology in Health and Disease</td>
<td>Dr J Beauchamp</td>
</tr>
<tr>
<td>BS2060</td>
<td>Developmental Biology</td>
<td>Dr E Lopez-Juez</td>
</tr>
<tr>
<td>BS2090</td>
<td>Insects, Plants and Fungi: Ecology and Applications</td>
<td>Prof A C Gange</td>
</tr>
<tr>
<td>BS2110</td>
<td>Practical Field Ecology</td>
<td>Prof J Koricheva</td>
</tr>
<tr>
<td>BS2120</td>
<td>Biological Data Analysis and Interpretation</td>
<td>Dr S Papworth</td>
</tr>
<tr>
<td>BS2140</td>
<td>Animal Behaviour</td>
<td>Dr S Portugal</td>
</tr>
<tr>
<td>BS2150</td>
<td>Applications of Molecular Genetics in Biology</td>
<td>Dr W Lucchesi</td>
</tr>
<tr>
<td>BS2160</td>
<td>Evolution</td>
<td>Dr F Ubeda de Torres</td>
</tr>
<tr>
<td>BS2001X</td>
<td>Marine Biology</td>
<td>Dr D Morritt</td>
</tr>
<tr>
<td>BS2510</td>
<td>Bioenergetics, Biosynthesis and Metabolic Regulation</td>
<td>Dr J McEvoy</td>
</tr>
<tr>
<td>BS2520</td>
<td>Protein, Structure and Function</td>
<td>Dr M Soloviev</td>
</tr>
<tr>
<td>BS2530</td>
<td>Molecular Biology</td>
<td>Dr C Wilkinson</td>
</tr>
<tr>
<td>BS2540</td>
<td>Molecular and Cellular Immunology</td>
<td>Dr W Lucchesi</td>
</tr>
<tr>
<td>BS2550</td>
<td>Neuronal Cell Signalling</td>
<td>Dr P Alifragis</td>
</tr>
<tr>
<td>BS2560</td>
<td>Pharmacology and Toxicology</td>
<td>Dr P E Chen</td>
</tr>
<tr>
<td>BS2570</td>
<td>Physical Biochemistry for Life Scientists</td>
<td>Dr M Soloviev</td>
</tr>
<tr>
<td>Third Year</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BS3010</td>
<td>Individual Research Project</td>
<td>Prof M J F Brown</td>
</tr>
<tr>
<td>BS3020</td>
<td>Special Study: Dissertation</td>
<td>Dr M Soloviev(Animal)</td>
</tr>
<tr>
<td>BS3030</td>
<td>Biology of Parasitic Diseases</td>
<td>Prof V Jansen(Parasitology)</td>
</tr>
<tr>
<td>BS3060</td>
<td>Conservation Biology</td>
<td>Dr S Papworth</td>
</tr>
<tr>
<td>BS3090</td>
<td>Entomology</td>
<td>Prof J Koricheva</td>
</tr>
<tr>
<td>BS3110</td>
<td>Mediterranean Island Conservation and Ecology</td>
<td>Prof M J F Brown</td>
</tr>
<tr>
<td>BS3120</td>
<td>Population and Community Ecology</td>
<td>Prof V Jansen</td>
</tr>
<tr>
<td>BS3160</td>
<td>Behavioural Ecology</td>
<td>Dr R Riesch</td>
</tr>
<tr>
<td>BS3180</td>
<td>Marine Ecology and Biodiversity</td>
<td>Dr D Moritt</td>
</tr>
<tr>
<td>BS3190</td>
<td>Climate Change: plants and the environment</td>
<td>Dr A Devoto</td>
</tr>
<tr>
<td>BS3510</td>
<td>Molecular and Medical Microbiology</td>
<td>Dr S Dissanayeke</td>
</tr>
<tr>
<td>BS3520</td>
<td>Seed Biology</td>
<td>Prof G Leubner</td>
</tr>
<tr>
<td>BS3530</td>
<td>Applications of Advanced Molecular Biology Methods</td>
<td>Prof R S Williams</td>
</tr>
<tr>
<td>BS3540</td>
<td>Cell & Molecular Biology of Cancer</td>
<td>Prof L Bögre</td>
</tr>
<tr>
<td>BS3560</td>
<td>Functional Genomics, Proteomics and Bioinformatics</td>
<td>Dr A Devoto</td>
</tr>
<tr>
<td>BS3570</td>
<td>Human Embryology and Endocrinology</td>
<td>Dr J Murdoch</td>
</tr>
<tr>
<td>BS3580</td>
<td>Cellular and Molecular Neuroscience</td>
<td>Dr P Alifragis</td>
</tr>
<tr>
<td>BS3590</td>
<td>Molecular Basis of Inherited Disease</td>
<td>Dr R Yáñez</td>
</tr>
<tr>
<td>BS3595</td>
<td>Clinical Physiology and Medicine</td>
<td>Dr J Murdoch</td>
</tr>
<tr>
<td>BS3600</td>
<td>Clinical Diagnosis of Disease</td>
<td>Prof P Sharma</td>
</tr>
</tbody>
</table>
1.3 Programme outlines

The programme structure for each of the seven degrees are summarised in the tables over the next few pages. The core courses are indicated as the shaded grey boxes; students must take these courses. Optional courses are indicated with the O. Students can select from the optional courses, to give a total of four Course Units for each year.

1.4 Progression conditions

The College regulations that are in place regarding Progression, for students that started their degree before Sept 2015, are such that students must pass at least three Course Units in order to progress to the next stage of the programme. Students must pass at least three Course Units in the final stage of the programme, and achieve a final average of 35.00% or above, in order to graduate. Students are generally given two attempts to progress to the next stage. For failed courses, a second attempt may be given as the opportunity to take a resit of the exam, either at the end of the summer (late August, early September), or in May the following year. Alternatively, students may be given the opportunity to repeat a failed course in attendance. Summer resits are normally only available to students who have narrowly failed a course (achieved 30-39%), and who have passed at least two course units already, and who would then be able to progress. The decision on which of these option(s) to give to students who do not progress is at the academic judgement of the Sub-Board of Examiners, who consider all students anonymously. Extenuating circumstances are considered in a separate pre-Sub-Board meeting, and recommendations from this meeting are fed into the Sub-Board meeting in order to be able to take action, if considered necessary.

1.5 Calculation of the final degree classification

Degrees at RHUL are awarded on the basis of the final average mark. At present, the final average is calculated as a 0 : 1 : 2 ratio of first : second : third year results. Therefore, first year results do not count towards the final degree outcome, but are important in underpinning the studies of second and third year.

Full details of the Undergraduate Regulations are provided in a separate document.
This list of core and optional courses applies to students who start their degree in September 2014. Students on the Biochemistry Programme are expected to take 5 half course units of Biochemistry courses (BS35**, BS3010, BS3020) in their final year. For each degree programme, core (shaded box), and optional (O) courses are listed. Core courses must be completed in order to qualify for that degree programme. Each course counts as one half-unit, apart from BS3010 which is a whole unit. Students should choose sufficient optional courses to give a total of 8 half units for the year, including core courses.

<table>
<thead>
<tr>
<th>Course Unit</th>
<th>Term</th>
<th>Biochemistry C700</th>
<th>Medical Biochemistry C741</th>
<th>Molecular Biology C701</th>
<th>Biomedical Sciences B990</th>
</tr>
</thead>
<tbody>
<tr>
<td>BS3010 Individual Research Project (1 c.u.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BS3020 Special Study: Dissertation</td>
<td></td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>BS3030 Biology of Parasitic Disease</td>
<td>T1</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>BS3190 Climate Change: Plants and the Environment</td>
<td>T2</td>
<td>O</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BS3510 Molecular and Medical Microbiology</td>
<td>T1 & T2</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>BS3520 Seed Biology: Molecular & Conservation Biology to Industrial Appns</td>
<td>T1</td>
<td>O</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BS3530 Applications of Advanced Molecular Biology Methods</td>
<td>T1 & T2</td>
<td>O</td>
<td>O</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BS3540 Cell & Molecular Biology of Cancer</td>
<td>T1 & T2</td>
<td>O</td>
<td>O</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BS3560 Proteomics, Genomics & Bioinformatics</td>
<td>T1 & T2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BS3570 Human Embryology and Endocrinology</td>
<td>T1 & T2</td>
<td>O</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BS3580 Cell & Molecular Neuroscience</td>
<td>T1 & T2</td>
<td>O</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BS3590 Molecular Basis of Inherited Disease</td>
<td>T1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BS3595 Clinical Physiology and Medicine</td>
<td>T2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BS3600 Clinical Diagnosis of Disease</td>
<td>T2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*The Term in which the course runs is shown as a guide, based on the timetable in 2015-16; this may be subject to change for 2016-17.
This list of core and optional courses applies to students who start their degree in September 2014. For each degree programme, core (shaded box) and optional (O) courses are listed. Core courses must be completed in order to qualify for that degree programme. Students should choose sufficient optional courses to give a total of 8 half units for the year, including core courses.

Core courses: These must be completed in order to qualify for that degree programme.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Term</th>
<th>Biology C100</th>
<th>Zoology C300</th>
<th>Ecology & the Environment C150</th>
</tr>
</thead>
<tbody>
<tr>
<td>BS3010</td>
<td>Individual Research Project</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BS3020</td>
<td>Special Study: Dissertation</td>
<td>T1</td>
<td>O</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>BS3030</td>
<td>Biology of Parasitic Diseases</td>
<td>T1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BS3060</td>
<td>Conservation Biology</td>
<td>T2</td>
<td>O</td>
<td></td>
<td>O</td>
</tr>
<tr>
<td>BS3090</td>
<td>Entomology: Pure and Applied</td>
<td>T1</td>
<td>O</td>
<td></td>
<td>O</td>
</tr>
<tr>
<td>BS3110</td>
<td>Mediterranean Island Conservation and Ecology Field Course</td>
<td>T3 of Y2</td>
<td>O</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>BS3120</td>
<td>Population and Community Ecology</td>
<td>T1</td>
<td>O</td>
<td></td>
<td>O</td>
</tr>
<tr>
<td>BS3160</td>
<td>Behavioural Ecology</td>
<td>T2</td>
<td>O</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BS3180</td>
<td>Marine Ecology and Biodiversity</td>
<td>T2</td>
<td>O</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BS3190</td>
<td>Climate Change: plants and the environment</td>
<td>T2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BS3520</td>
<td>Seed Biology: Molecular & Conservation Biology to Industrial Appns</td>
<td>T1</td>
<td>O</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BS3510</td>
<td>Molecular and Medical Microbiology</td>
<td>T1 & T2</td>
<td>O</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BS3530</td>
<td>Advanced Molecular Biology</td>
<td>T1 & T2</td>
<td>O</td>
<td></td>
<td>O</td>
</tr>
<tr>
<td>BS3540</td>
<td>Cell & Molecular Biology of Cancer</td>
<td>T1 & T2</td>
<td>O</td>
<td></td>
<td>O</td>
</tr>
<tr>
<td>BS3570</td>
<td>Human Embryology and Endocrinology</td>
<td>T1 & T2</td>
<td>O</td>
<td></td>
<td>O</td>
</tr>
<tr>
<td>GG3017</td>
<td>Conservation Biogeography (subject to timetable compatibility)</td>
<td>T2</td>
<td></td>
<td></td>
<td>O</td>
</tr>
<tr>
<td>GG3046</td>
<td>Mammals in a Changing World (subject to timetable compatibility)</td>
<td>T1</td>
<td></td>
<td></td>
<td>O</td>
</tr>
</tbody>
</table>

The Term in which the course runs is shown as a guide, based on the timetable in 2015-16; this may be subject to change for 2016-17
1.6 Course Unit Specifications and Pre-requisites

Please note that all timings are based on those for 2015-16. Timetables are subject to change and will only be confirmed by the College immediately prior to the start of the academic year. Course information is provided for courses in 2015-16 and is subject to minor amendment as part of the process of continuous improvement.

INFORMATION ABOUT THIRD YEAR COURSES

BS3010 – Individual Research Project – Prof M J F Brown
An individual wet or dry investigation, supervised by an appropriate member of staff, who will provide guidance both before starting and during the course of your work. The research will be carried out during the Summer (post-2nd year exams), Autumn and Spring terms. Students will attend a project training day after 2nd year exams. In addition, students are expected to attend the School Seminar Series (~15 1-hour seminars from external scientists), to gain a broader scientific context for the work and develop presentational skills, and 3rd year tutorials (5 x 1-hour sessions), which will enable them to maximise the value of the transferable skills gained from their project work and thus enhance their future career. The work is assessed by means of a report submitted either at the end of either the first or second term in the third year. Students will have been allocated to supervisors on the basis of the student’s expressed research preferences, their 2nd year exam results and staff availability, and then research topics will be decided in consultation between the student and staff concerned before commencement of the project. In some cases students may have designed their own research project. Students will present a word-processed report (not exceeding 8,000 words exclusive of references) that will contribute 75% of the mark. 15% will be a continuous assessment mark awarded for performance by the supervisor. They will also give a 15 minute oral presentation on their project that will contribute 10% of the mark. Oral presentations will be given in Reading Week of Term 2 (for students who handed in projects at the end of Term 1) or the week after 3rd year exams (for all others).

<table>
<thead>
<tr>
<th>Value</th>
<th>- One course unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suitable</td>
<td>- 3rd year</td>
</tr>
<tr>
<td>Available</td>
<td>- Summer vacation after 2nd year and 1st term; or 1st and 2nd term, 3rd year</td>
</tr>
<tr>
<td>Prerequisites</td>
<td>- As specified for individual projects in the BS3010 Handbook</td>
</tr>
</tbody>
</table>

BS3020 – Special Study: Dissertation – Dr M Soloviev/Prof V Jansen
A literature research project on a biological or biochemical topic of the student’s choice, acceptable to the School of Biological Sciences. The resulting word-processed and bound report should be at least 5,000 but not more than 7,500 words, with some 20-40 references and appropriate figures or diagrams. Students will exercise and develop their skills in critically evaluating the recent scientific literature on a topic of their choice. The exploration of the literature will enable them to see the manner in which scientific understanding is advanced by obtaining data that is used to generate and test hypotheses. The student, in preparing a detailed written
report, is presented with an opportunity to improve their presentational skills. The student’s expert knowledge in the topic may be investigated in the form of a viva voce.

Value
- Half course unit

Suitable
- 3rd year

Available
- 1st and 2nd term of 3rd year

Prerequisites
- None, but subject choice must be appropriate to student’s degree programme

BS3030 - Biology of Parasitic Diseases - Dr J Tovar-Torres

This course explores the principles of parasitism and the protective mechanisms employed by immuno-competent hosts to limit the spread of infection. It outlines the biological strategies used by a range of unicellular and multicellular organisms to colonise its host causing disease in human and non-human hosts. Case studies on the pathology and the cellular immunity elicited by various parasites are explored. The immune evasion strategies used by widely distributed human parasites to protect themselves from immune attack are also reviewed. The principles and prospects of anti-parasitic vaccination in the 21st century are presented and discussed.

Value
- Half course unit

Suitable
- 3rd year

Available
- 1st term

On
- Tuesday

Prerequisites
- BS2150 or BS2530 or BS2005

BS3060 - Conservation Biology - Dr S Papworth

The course covers the biological basis of the great threats to biodiversity – habitat loss and fragmentation, intensive agriculture, over-harvesting and natural resource exploitation, alien species, disease and global climate change – and the approaches developed by conservation biologists to overcome these threats at local and global scales. The potential for subjectivity in conservation decision-making and the crucial importance of science-based conservation is stressed. Practical work is part of the assessment and involves writing an invasive species management plan.

Value
- Half course unit

Suitable
- 3rd year

Available
- 2nd term

On
- Friday

Prerequisites
- BS1040

BS3090 - Entomology: Pure and Applied - Prof J Koricheva

The course aims to provide students with a sound understanding of insect biology, addressing aspects of their physiology and biology. Insects are the most numerous animals on the planet and the basic information will enable students to appreciate why this is so. Insects are of conservation importance and part of the course will focus on beneficial insects such as pollinators and saproxylic (dead wood feeding) species and focus on the reasons for their decline. The course also aims to introduce students to practitioners in entomology, showcasing research at the School, CABI and Rothamsted Research. The final aim of the course is to improve students'
communication skills. Students will improve their verbal and written skills through the making of a podcast and the production of an information leaflet for the general public.

Value
- Half course unit

Suitable
- 3rd year

Available
- 1st term

On
- Thursday

Prerequisites
- None

BS3110 – Mediterranean Island Conservation and Ecology Field Course – Prof M Brown

The course exposes students to the ecology of the Greek island of Samos, and the work of the main Greek conservation NGO (Archipelago). This will involve conservation ecology in marine and terrestrial ecosystems, with a focus on key species and habitats. Practical work includes (i) sea grass monitoring (using snorkelling), (ii) bird monitoring, (iii) plankton sampling, micro-plastic sampling and oceanography, on a research vessel, (iv) golden jackal monitoring (camera traps, playback techniques), (v) invertebrate monitoring (pollinator surveys, pitfall traps), (vi) chameleon monitoring (nocturnal surveys). On-site lectures underpin the practical sessions and the course considers behavioural, conservation, and ecological aspects, and the relationship of conservation to policy and local knowledge. Students acquire skills in identification, monitoring, research project development, oral presentations, and the presentation of written work. Group project work will develop interpersonal skills, including organisation, leadership and oral presentation. The inclusion of an element of self-assessment will further foster critical abilities. This course will involve a week-long trip to Samos. Estimated costs for the course are ~ £550 per student. Students are expected to cover their travel costs.

Value
- Half course unit, counts as Y3 course

Suitable
- 3rd year

Available
- 3rd term of Y2

On
- Last week of May/first week of June, after Y2 exams

Prerequisites
- BS2110

BS3120 – Population and Community Ecology – Prof V Jansen

In the course, the principles of population and community ecology are explained, using examples from animal and plant assemblages. It focuses on population growth, inter- and intra-specific competition, trophic relations and the factors which regulate populations. The ecological processes that contribute to community organisation, such as food web structure, body size, succession and natural disturbances, are considered. The role of population and community ecology in the maintenance of biodiversity is emphasised. A proposal writing exercise and assignments, which will involve the use of computer simulations, are included.

Value
- Half course unit

Suitable
- 3rd year

Available
- 1st term

On
- Friday

Prerequisites
- None
BS3160 - Behavioural Ecology - Dr R Riesch
The course demonstrates how the behaviour of animals can be explained in an ecological and evolutionary framework. The emphasis is upon functional and evolutionary hypotheses and testing models that seek to explain how animals find and use key resources (such as food, breeding territories, mates etc).

- **Value**: Half course unit
- **Suitable**: 3rd year
- **Available**: 2nd term
- **On**: Thursday
- **Prerequisites**: BS2140

BS3180 - Marine Ecology and Biodiversity - Dr D Monitt
The course will begin with a brief introduction to the marine environment and oceanography. Following on from this a number of topical subjects will be used to illustrate recent developments in the field of marine ecology. The biodiversity and biogeography in the marine environment will be illustrated with reference to selected habitats, namely coral reefs and the deep ocean. The biology of the deep ocean, in particular the biology of mid-water and hydrothermal vent communities, will include consideration of technological advances in deep ocean exploration. This theme will be developed further in lectures on tracking studies, behaviour and conservation of marine megafauna, e.g sharks, sea birds and marine mammals. The topical issues of marine pollution (including plastics pollution), ocean acidification and global climate change will be considered with respect to effects on marine biodiversity. Topicality is also maintained during coursework: pairs of students prepare a poster based on a recently published paper from a highly rated marine biological journal.

- **Value**: Half course unit
- **Suitable**: 3rd year
- **Available**: 2nd term
- **On**: Wednesday
- **Prerequisites**: Recommended: BS2001X (MB1)

BS3190 - Climate change: plants and the environment - Dr A Devoto
The course will give an advanced treatment of the effect of global climate change on the interaction between plants and the environment and will provide new opportunities to consider at various levels (ecological, physiological and molecular) the reaction of plants to environmental changes. Topics include a historical perspective on plants and humanity, microbial science and crop improvement.

- **Value**: Half course unit
- **Suitable**: 3rd Year
- **Available**: 2nd Term
- **On**: Tuesday
- **Prerequisites**: BS1060

BS3510 - Molecular and Medical Microbiology - Dr S Dissanayeke
Advanced aspects in molecular microbiology with particular reference to bacteria and pathogenic eukaryotes. Topics include pathogen mechanisms for infection, the host immune response to infection, vaccine development, gastrointestinal health
and disease, resistance to antibiotics, anti-parasite chemotherapy and the genetic and biochemical validation of parasite drug targets in the kinetoplastidae.

Value - Half course unit
Suitable - 3rd year
Available - 1st and 2nd terms
On - 1st term: Thursday, 2nd term: Friday
Prerequisites - BS1070, BS2005; plus BS2540 recommended

BS3520 - Seed Biology: From Molecular & Conservation Biology to Industrial Applications - Prof G Leubner

Plant seeds and fruits are of central importance to human existence as they constitute the beginning and the end of most food supply chains (food security and sustainability). They are the delivery systems of agricultural biotechnology and a cornerstone of ecosystem conservation (seed banking). Topics of the lectures include a solid introduction into the fundamental processes of seed development and food reserve deposition, germination and reserve mobilisation, as well as the utilisation of seeds for molecular pharming. The evolution of the seed habit and the biomolecular paleobotany of fossil seeds focus on the key advantages and diversity of seeds and fruits which evolved in interaction with climate change. The morphological diversity of seeds and fruits includes a one-day visit and practical at Kew’s Millennium Seed Bank. This is followed by the biophysics of seed dispersal and the developmental biomechanics of seed fibres and seed germination. Further topics include a deeper insight into the molecular mechanisms underlying seed dormancy, germination and persistence in the soil bank, and their environmental control including by abiotic and biotic stress factors. The course also covers technologies used by the seed industry to improve crop seed quality and the research in agricultural biotechnology of wheat at Rothamsted Research at Harpenden. The lecture is complemented by course work in small groups on selected topics from the actual literature which is presented at the "seed conference". Websites: 'The Seed Biology Place' - www.seedbiology.eu, 'Kew’s Millenium Seed Bank' - www.kew.org/science-conservation/save-a-seed-prosper/millenium-seed-bank/, 'Rothamsted Research' - www.rothamsted.ac.uk

Value - Half course unit
Suitable - 3rd Year
Available - 1st Term
On - Tuesday
Prerequisites - BS2020 or BS2150

BS3530 - Applications of Advanced Molecular Biology Methods - Prof R S Williams

Molecular biology research provides a key approach underpinning modern research that is employed in a wide range of systems including animal and plant models, as well as the simple social amoeba, Dictostelium. This approach often employs the production and use of transgenic and knockout genetically modified organisms and the analysis of gene regulation and expression in response to the environment and in circadian rhythms. This course will describe these modern functional genomics studies, at an advance level, with particular reference to current research applications.
BS3540 - Cell and Molecular Biology of Cancer - Prof L Bögre
This course will cover selected topics in molecular cell biology relevant to cancer, including: cell-cell adhesion and signalling; stem cells. We cover the importance of the cytoskeleton, including microtubule structure and their functional roles for cell division, cell cycle and polarity, cell dynamics and diseases. Additional topics on cancer biology include oncogenes, tumour suppressor genes and caretaker genes and the signalling and regulatory pathways these are involved in. The course covers the cellular, tissue and developmental barriers that have to be broken for the development of cancer. These will include apoptosis, senescence, angiogenesis and metastases. The course will also include case studies and novel research avenues for diagnosis and the rational treatment of cancer.

BS3560 - Functional Genomics, Proteomics and Bioinformatics - Dr A Devoto
The course will give an advanced treatment of structure-function relationships in proteins and of new opportunities for the use of genome-wide analyses in dissecting regulation in biological systems. Topics include, post-genomic science; modes of specific recognition in mediating protein interactions; domains and functions; and, protein engineering. Students complete a guided introduction to bioinformatics resources.

BS3570 - Human Embryology and Endocrinology - Dr J Murdoch
This course will cover select aspects in the development of human embryos and the development and function of particular endocrine systems. Topics to be covered in detail include early embryonic development, including formation of the three cell layers during gastrulation and the specification of anterior-posterior and left-right axes. The formation and patterning of the brain and spinal cord will be discussed, including the cellular processes and molecular pathways involved. The effects of genetic and environmental insults in causing birth defects will be considered and the preventative action of folic acid treatment will be discussed. Techniques for deciphering the cause of birth defects will be considered, including the role of model organisms and the process of positional cloning. Other topics include the embryonic processes involved in craniofacial development and craniofacial defects.
development of the thyroid, parathyroid and adrenal glands will be covered, with
detail on the synthesis, regulation and action of parathyroid and adrenocortical
hormones. Sexual determination and differentiation will be discussed. Reproductive
endocrinology will cover the regulation of reproductive function in males and
females, including the hormonal changes associated with pregnancy. The processes
of egg and sperm maturation and fertilization will be covered, leading us back to
early preimplantation development. This course is three quarters Embryology.

<table>
<thead>
<tr>
<th>Value</th>
<th>Half course unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suitable</td>
<td>3rd year</td>
</tr>
<tr>
<td>Available</td>
<td>1st and 2nd term</td>
</tr>
<tr>
<td>On</td>
<td>1st term: Wednesday, 2nd term: Friday</td>
</tr>
<tr>
<td>Prerequisites</td>
<td>BS2050 or BS2060 or BS2550</td>
</tr>
</tbody>
</table>

BS3580 – Cellular and Molecular Neuroscience – Dr P Alifragis
This course covers brain development, function and disorders. We discuss the cellular
and molecular mechanisms of brain development with particular reference to the
cerebral cortex. We discuss in detail the synthesis, storage and release of
neurotransmitters. We will review the molecular basis of learning and memory. We will
also study the cellular and molecular basis of brain disorders, including the
neurodegenerative disorder, particularly Alzheimer’s disease, as well as epilepsy and
bipolar disorder. The course also includes lectures from a clinician, on the cellular and
molecular basis of neuroprotection in preterm babies and infants.

<table>
<thead>
<tr>
<th>Value</th>
<th>Half course unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suitable</td>
<td>3rd year</td>
</tr>
<tr>
<td>Available</td>
<td>1st and 2nd term</td>
</tr>
<tr>
<td>On</td>
<td>Wednesday (and Thursday for some lectures Term 2)</td>
</tr>
<tr>
<td>Prerequisites</td>
<td>BS2550</td>
</tr>
</tbody>
</table>

BS3590 – Molecular Basis of Inherited Disease – Dr R Yáñez
The course provides an introduction to the theory, technology, and clinical practice
of human molecular genetics: the metabolic and molecular bases of human
inherited disease, mapping disease genes, the human genome project,
bioinformatics, clinical aspects of the biochemistry of inborn errors of metabolism,
and therapeutic approaches. The course is taught in relation to a selected range of
illustrative genetic disorders and inborn errors of metabolism such as muscular
dystrophies, cystic fibrosis, haemophilia, lysosomal storage disorders,
haemoglobinopathies, mitochondrial respiratory chain disorders, neurotransmitter
synthesis disorders, lipoprotein diseases and primary immunodeficiencies. This course
is taught primarily by external lecturers who are experts in the field.

<table>
<thead>
<tr>
<th>Value</th>
<th>Half course unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suitable</td>
<td>3rd year</td>
</tr>
<tr>
<td>Available</td>
<td>1st term</td>
</tr>
<tr>
<td>On</td>
<td>Friday</td>
</tr>
<tr>
<td>Prerequisites</td>
<td>BS1070 and BS1090</td>
</tr>
</tbody>
</table>

BS3595 – Clinical Physiology and Medicine – Dr J Murdoch
This course will be taught by clinicians from Ashford and St Peter’s Hospital, who are
experts in their field and working at the patient interface. The course will therefore be
taught from the clinical perspective, providing both background information on a
topic but taking it through to consider common disorders, their causes and the
medical treatments. The course will consider the clinical physiology of selected
tissues, including smooth muscle, bone, cartilage and ligaments, and will set these
tissues into context in terms of intestinal function, anorectal physiology, and the
formation and function of bone and soft tissues. The lectures will consider some
common diseases and disorders, including pelvic floor defects, complications of child
birth and colon cancer. Clinical problems with bone and soft tissue will be discussed,
including disorders of calcium homeostasis, metabolic defects, and the effects of
exercise, ageing and injury. The course will also address the physiological effects of
shock, and the effects of stroke and neurological diseases. This course will also discuss
how to scientifically evaluate new interventions or treatments, and students will learn
how to critically appraise the “evidence” behind success claims.

Value
- Half course unit

Suitable
- 3rd year

Available
- 2nd term

On
- varies: Monday or Tuesday

Prerequisites
- BS2050

BS3600 - Clinical Diagnosis of Disease - Prof P Sharma
The course will cover the clinical application of biochemistry and physiology. The
chemical pathology of a range of physiological systems will be studied, including
kidney, liver, heart, and thyroid. In addition clinical biochemical aspects of cancer
diagnosis and infertility and epilepsy investigation will be covered. Lectures will
concem the rationale behind the analyses used in the biochemical investigation of
disease and the clinical aspects of disorders affecting the various organs/systems.
The lectures will be followed by tutorials based on individual clinical cases and their
investigation.

Value
- Half course unit

Suitable
- 3rd year

Available
- 2nd term

On
- Thursday

Prerequisites
- Biomedical Sciences or Medical Biochemistry degree
 programmes only

Please note that course information is given as accurately as possible but is subject
to change in the course of continual updating and review of courses.

Course unit specifications can be found at:

http://www.rhul.ac.uk/biologicalsciences/informationforcurrentstudents/courseunits/home.aspx
1.7 Registration Process

Choice of course-units: Brief information about courses taught in the School are given above, and in the Undergraduate Handbook. More detailed information will be given in the Course specification for each individual course; these can be found at: http://www.rhul.ac.uk/biologicalsciences/informationforcurrentstudents/courseunits/home.aspx

Students should be aware that there are College thresholds for the minimum number of students required for a course to be taught and some courses can only accommodate limited numbers. After preliminary registration, if a course is over-subscribed or under-subscribed students will be notified as soon as possible and an alternative selection can then be made. However, courses are only rarely undersubscribed.

Preliminary registration: In the second or third term, students must pre-register for the optional courses they intend to take the following academic year. Registration for core courses is automatic. Pre-registration for suitable optional courses is done conveniently by email and full instructions are provided. Appropriate forms are completed and submitted as an attachment to SBSPre-registration@rhul.ac.uk.

Careful consideration to the requirements of individual Degree Programmes must be given (see summary tables above) before completing the appropriate forms. Students should consider courses which form coherent groups, and must check timetables for compatibility. Note that while every effort is made to avoid clashes, it is ultimately the student’s responsibility to check the timetabling allows particular course combinations. Precise timetables for the next academic year will only be available at the beginning of the year, but existing timetables can be taken as a guide for the set-up that is likely to apply for the following year. Guidance on selection of courses is available from Personal Advisors and the Academic Coordinators for Molecular and Organismal Bioscience.

Registration: Confirmation of course registration occurs at the beginning of the relevant academic session. It is imperative that students see their Personal Advisor at the appointed time; the official College ‘Course Entry Form’ signed by the student at that time constitutes the basis for examination entries. Please note that the School makes every effort to retain course timetabling but that there may be unavoidable changes to the timetable over the summer vacation. Students should therefore check the timetables again carefully at the beginning of the academic year.

1.8 Course registrations

You can only register for four course units in each academic year (this excludes courses which are being resat). While you have the option of changing courses early in an academic term subject to agreement from the School, once you have submitted assessment for the course, you may not replace it with another either in that term or in a subsequent term (e.g. Spring term). Any courses that you wish to take on an extracurricular basis (that is, as extra and not counting towards your degree) must be
identified at the start of the academic year or before any assessment has been completed for the course.

1.9 Change of Course Unit Registration

Students wishing to change any element of their course-unit registration, either to drop a course for another one, to delete a course or to register for an extra course, must see their Personal Advisor for this to be authorised. **You may not normally join a course after it has been taught for more than two weeks.** Your authorised change of course unit must be recorded in the School Teaching Office for examination entry amendment (please see the Faculty Administrator, Teaching, B504).

1.10 Change of Degree Programme

Students wishing to change their degree programme registration must:

a) see the appropriate Academic Coordinator to obtain approval.

b) obtain the necessary form from the Faculty Administrators which will have to be signed by the Director of Teaching.

It is usually possible to change degree programmes during or at the end of first year of study where the first year is common to several programmes, but after the first year difficulties might arise because of the requirement to complete particular core course units for the award of each degree. Advice on changing degree programme should be obtained from your Personal Advisor in the first instance, or from the appropriate Academic Coordinator.